期刊文献+

基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测 被引量:97

Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system
原文传递
导出
摘要 2019年12月,新型冠状病毒肺炎(novel coronavirus pneumonia,NCP)疫情从武汉开始暴发,几天内迅速传播到全国乃至海外.科学有效地掌控疫情发展对疫情防控至关重要.本文基于全国各级卫生健康委员会每日公布的累计确诊数和治愈数,提出一类基于时滞动力学系统的传染病动力学模型.在模型中引入时滞过程,用来描述病毒潜伏期和治疗周期.通过公布的疫情数据,首先准确反演模型的参数;其次有效地模拟目前疫情的发展,并预测疫情未来的趋势;最后分析各级政府防控措施手段的有效程度,并发现在现有的高效防控措施下,疫情将在近期好转. In late December 2019,a series of novel coronavirus pneumonia(NCP)cases emerged in Wuhan,and the outbreak of NCP began to spread rapidly to the whole country and even overseas within a few days.The scientific and effective understanding of epidemic development is essential for the prevention and control.In this paper,based on the cumulative number of confirmed and cured cases reported daily by the National Health Committee,we propose a novel dynamic system with time-delay to describe the outbreak of NCP.The time-delay process is introduced to describe the latent period and treatment cycle.Numerical simulations show that the parameters in the model are identified accurately,and the trend of the outbreak of NCP is effectively simulated.Moreover,the prediction for the tendency of NCP is provided for reference.Finally,we would conclude that the situation would be better and better under the current effective and efficient measures of government.
作者 严阅 陈瑜 刘可伋 罗心悦 许伯熹 江渝 程晋 Yue Yan;Yu Chen;Keji Liu;Xinyue Luo;Boxi Xu;Yu Jiang;Jin Cheng
出处 《中国科学:数学》 CSCD 北大核心 2020年第3期385-392,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11971121) 上海科学技术委员会“上海青年科技启明星计划”(批准号:19QA1403400)资助项目.
关键词 新型冠状病毒肺炎 时滞动力学模型 参数反演 疫情预测 novel coronavirus pneumonia dynamic system with time delay parameter identification epidemic prediction
作者简介 严阅,E-mail:yan.yue@mail.shufe.edu.cn;陈瑜,E-mail:yuchen@sufe.edu.cn;刘可伋,E-mail:liu.keji@sufe.edu.cn;罗心悦,E-mail:vera@163.sufe.edu.cn;许伯熹,E-mail:xu.boxi@mail.shufe.edu.cn;江渝,E-mail:jiang.yu@mail.shufe.edu.cn;通信作者:程晋,E-mail:jcheng@fudan.edu.cn
  • 相关文献

参考文献1

二级参考文献20

  • 1Chowell G, Fenimore P W, Castillo-Garsow M A, et al. SARS ourbreak in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. Los Alamos Unclassified Report LA-UR-03-2653 (2003).
  • 2Martin Enserink. One year after outbreak, SARS virus yields some secrets. Science, 2004, 304: 1097
  • 3Marc Lipsitch, Ted Cohen, Ben Cooper, et al. Transmission dynamics and control of sever acute respiratory syndrome. Science, 2003, 300: 1966~1970
  • 4Steven Riley, Christophe Fraser, Christ A, Donnelly et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science, 2003, 300: 1961~1966
  • 5Chris Dye, Nigel Gay. Modeling the SARS epidemic. Science, 2003, 300: 1884-1885
  • 6Scholzen A. Wird ganz Hongkong von SARS erfasst? Wissenschaftler befürchten dramatischen Anstieg der Lungenseuche. Die Welt, 2003, 10: 32
  • 7Oliver Razum, Heiko Becher, Annette Kapaun, et al. SARS, lay epidemiology, and fear. Lancet, 2003, 361(9370):1739~40
  • 8Christl A Donnelly, Azra C Ghari, Gabriel M Leung, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet, 2003, 361(9371): 1761~6
  • 9Tuen Wai Ng, Gabriel Turinici, Antoine Danchin. A double epidemic model for the SARS propagation. BMC Infectious Diseases, 2003, 3: 19
  • 10Aron J L, Schwartz I B. Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol, 1984, 110: 665~679

共引文献14

同被引文献486

引证文献97

二级引证文献545

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部