期刊文献+

带有种群密度制约接触率的SIR流行病模型的全局分析(英文) 被引量:13

Global Analysis of SIR Epidemic Models with Population Size Dependent Contact Rate
在线阅读 下载PDF
导出
摘要 本文研究了两类具有种群密度制约接触率的SIR流行病模型,其生态学结构分别为常数输入和Logistic出生。可以证明两模型均存在在强阈值现象,阈值参数即模型的基本再生数,它决定了疾病的绝灭和流行也决定了模型的全局性态。为了证明地方病平衡点的全局稳定性,对具有常数输入的SIR模型,引入了一个变量代换将三维模型转化为具有极限方程的二维渐近自治系统;对具有Logistic出生的SIR模型,构造了Lyapunov函数。 Two SIR type epidemic models with population size dependent contact rate are analyzed. The demographic structures considered here are recruitment and logistic birth, respectively. The basic reproduction numbers of two SIR models are all the sharp thresholds which determine whether the diseases die out or remain endemic. To prove the global stability of endemic equilibria, the change of variable, which can reduce the SIR model with recruitment to a two-dimensional asymptotical autonomous system, is introduced when the population dynamics is immigration and the Liapunov function is constructed when the population dynamics is logistic birth.
出处 《工程数学学报》 CSCD 北大核心 2004年第2期259-267,共9页 Chinese Journal of Engineering Mathematics
基金 ThisresearchissupportedbyNationalNaturalScienceFoundationofChina grantNo(199710 6 6 )
关键词 SIR模型 种群密度制约接触率 常数输入 Logistic出生 全局渐近稳定性 SIR model contact rate recruitment logistic birth Global stability
  • 相关文献

参考文献14

  • 1Hethcote H W. Three basic epidemiological models[M]. In: Levin S A, Hallam T G, Gross L J et al .Applied Mathmatical Ecology; Biomathematics, Springer Berlin, 1989; 18:119 - 114
  • 2Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic[M]. In: Castillo-Chavez C et al . Mathematical and statistical approaches to AIDS epidemiology. (Lecr Notes Biomath), Berlin He
  • 3Anderson R M. Transmission dynamics and control of infectious diseases[M]. In: Anderson R M, May M R et al . Population biology of infectious diseases, Life Sciences Research Report 25, Dathlem conference,Berlin: Springer, 1982; 1982 ;25:149 - 176
  • 4Dietz K. Overall population patterns in the transmission cycle of infectious disease agents[M]. In: Anderson R M,May R M et al . Population Biology of Infectious Diseases, Belin Heidelberg New York: Springer,1982
  • 5Heesterbeek J A P, Metz J A J. The saturating contact rate in marriage and epidemic models[J]. J Math Biol, 1993; 31: 529 - 539
  • 6Zhou J, Hethcote H W. Population size dependent incidence in models for diseases without immunity[J]. J Math Biol, 1994; 32: 809 - 834
  • 7Brauer F, van den Driessche. Models for transmission of disease with immigration of infectives[J]. Math Biosci, 2001; 171:143 - 154
  • 8Gao L Q, Hethcote H W. Disease transimission models with density-dependent demographics[J]. J Math Biol, 1992 ;30: 717 - 731
  • 9Greenhalgh D. Some thresholdand stability results for epidemic models with a density dependent death rate[J]. Theor Pop Biol,1992;42:130- 151
  • 10Bremermann H J, Thieme H R. A competitive exclusion principle for pathogen virulence[J]. J Math Biol, 1989 ;27:179 - 190

同被引文献47

引证文献13

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部