期刊文献+

一类具有时滞和阶段结构的SIR流行病模型分析 被引量:5

Analysis of an SIR epidemic model with time-delay and stage-structured characteristics
在线阅读 下载PDF
导出
摘要 建立了具阶段结构的时滞传染病模型,得到了疾病流行与否的阈值R0.讨论了R0<1时,无病平衡点的局部稳定性和Hopf分支的存在性及R0>1时,地方病平衡点的局部稳定性和Hopf分支的存在性. An epidemic model with time -delay and stage -structured characteristics is established, and the threshold value R0 for determining the epidemic of the disease is obtained. When R0 〈 1, the system's local asymp- totic stability and the existence of Hopf branch at its free equilibrium are analyzed, when R0 〉 1, the system's local asymptotic stability and the existence of Hopf branch at the positive equilibrium are also analyzed .
出处 《云南民族大学学报(自然科学版)》 CAS 2015年第3期211-216,共6页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11061017)
关键词 时滞 阶段结构 传染病模型 局部稳定性 HOPF分支 time - delay stage structure epidemic model local asymptotic stability Hopf branch
作者简介 王丽敏(1988-),女,硕士研究生.主要研究方向:生物数学.
  • 相关文献

参考文献12

二级参考文献58

共引文献36

同被引文献22

  • 1LI X Z,ZHOU L L.Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate[J].Chaos Solitons&Fractals,2009,40(2):874-884.
  • 2LIU J,ZHANG T.Epidemic spreading of an SEIRS model in scale-free networks[J].Communi-cations in Nonlinear Science&Numerical Simulation,2011,16(8):3375-3384.
  • 3KOROBEINIKOV A.Lyapunov functions and global properties for SEIR and SEIS epidemic models[J].Mathematical Medicine&Biology-a Journal of the Ima,2004,21(2):75-83.
  • 4ZHANG J P,JIN Z.The analysis of an epidemic model on networks[J].Applied Mathematics&Computation,2011,217(17):7053-7064.
  • 5MILLER J C.A note on a paper by Erik Volz:SIR dynamics in random networks[J].Journal of Mathematical Biology,2011,62(3):349-358.
  • 6MA J,VAN DEN DRIESSCHE P,WILLEBOORDSE F H.Effective degree household network disease model[J].Journal of Mathematical Biology,2013,66(1-2):75-94.
  • 7ZHANG J P,JIN Z.The analysis of an epidemic model on networks[J].Applied Mathematics and Computation,2011,217(17):7053-7064.
  • 8JIN Z,SUN G,ZHU H.Epidemic models for complex networks with demographics[J].Mathematical Biosciences and Engineering,2014,11(6):1295-1317.
  • 9SMITH H L.On the asymptotic behavior of a class of deterministic models of cooperating species[J].SIAM Journal on Applied Mathematics,1986,46(3):368-375.
  • 10VAN DEN DRIESSCHE P,WATMOUGH J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Mathematical Biosciences,2002,180(1):29-48.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部