期刊文献+

基于深度学习的个性化网吧游戏推荐 被引量:2

Personalized Internet Bar Game Recommendation Based on Deep Learning
在线阅读 下载PDF
导出
摘要 与传统推荐模型相比,深度学习可以更好地理解用户需求、项目特征及用户与项目之间的互动性,从而更有效地发现用户和项目之间的匹配关系。将深度神经网络应用于网吧游戏推荐场景,分析用户的个人偏好,根据时间推移兴趣的变化,对用户历史游戏行为记录进行建模训练,为用户提供个性化Top-N游戏推荐。基于深度神经网络设计训练模型,输入层采用对用户历史行为数据处理后的用户偏好向量,隐藏层运用ReLU激活函数的多层网络,输出层则采用逻辑回归的Softmax结构,最终运用带L2规范项的代价函数评估学习到的模型可靠性。在真实数据集下的实验结果表明,随着隐藏层的增加,该方法能明显降低均方根误差,且能提高召回率。 Compared with the traditional recommendation model,deep learning can better understand user needs,project characteristics and user-project interaction,so as to more effectively discover the matching relationship between users and projects.The deep neural network is applied to the recommended scene of the internet bar game,and the user’s personal preference is analyzed.According to the change of interest in the time,the game record of the user history is modeled and trained to provide the user with personalized Top-N game recommendation.Based on the deep neural network design training model,the input layer uses the user preference vector processed by the user’s historical behavior data,the hidden layer uses the multi-layer network of the ReLU activation function,and the output layer uses the Logical regression Softmax structure,and finally the L2 specification item is used.The cost function evaluates the reliability of the learned model.Experimental results under the real data set show that with the increase of the hidden layer,the method can significantly reduce the root mean square error and improve recall rate.
作者 陈耀旺 严伟 俞东进 徐凯辉 夏艺 杨威 CHEN Yaowang;YAN Wei;YU Dongjin;XU Kaihui;XIA Yi;YANG Wei(School of Computer,Hangzhou Dianzi University,Hangzhou 310018,China;Zhejiang Institute of Science and Technology Information,Hangzhou 310006,China;Zhejiang Topcheer Information Technology Co.,Ltd.,Hangzhou 310006,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期206-209,216,共5页 Computer Engineering
基金 国家自然科学基金(61472112) 浙江省重点研发项目(2017C01010 2016F50014 2015C01040)
关键词 个性化网吧 深度学习 推荐算法 深度神经网络 游戏场景 personalized internet bar deep learning recommendation algorithm deep neural network game scene
作者简介 陈耀旺(1987—),男,硕士,主研方向为推荐系统、软件体系架构;严伟,高级工程师、硕士;通信作者:俞东进,教授、博士生导师,E-mail:yudj@hdu.edu.cn;徐凯辉,硕士研究生;夏艺,工程师;杨威,高级工程师、硕士
  • 相关文献

参考文献3

二级参考文献18

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献649

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部