期刊文献+

基于SVM-LeNet模型融合的行人检测算法 被引量:12

Pedestrian Detection Algorithm Based on SVM-LeNet Model Fusion
在线阅读 下载PDF
导出
摘要 在方向梯度直方图(HOG)联合支持向量机(SVM)算法(HOG-SVM)和Le Net网络模型基础上,提出了HOG与卷积神经网络(CNN)融合的行人检测算法(SVM-Le Net)。采用多尺度滑动窗口提取HOG特征并送入SVM分类器,根据后验概率判断候选区,随后运用CNN算法剔除误检窗口。为解决单个目标被多个候选区域框定的问题,使用非极大值抑制算法(NMS)进行多矩形融合,保留检测区域中后验概率最大的窗口抑制与其重叠的检测窗口。分类过程中,以候选区域在SVM和Le Net中后验概率为依据判断行人区域。实验结果表明,与HOGSVM和Le Net行人检测算法相比,该算法在准确率和召回率上有明显优势。 On the basis of Histogram of Oriented Gradient with Support Vector Machine(HOG-SVM) algorithm and LeNet network model, a pedestrian detection algorithm which is the combination of HOG and Convolutional Neural Network(CNN) is proposed. Firstly, multi-scale sliding windows are used to extract the HOG features which are then sent to SVM classifier to find the candidate regions. The regions are judged according to the posterior probability. And the CNN algorithm is used to eliminate the false detection window. In order to solve the problem that a single target is framed by multiple candidate regions, the Non-maximum Suppression (NMS) algorithm is used to fuse the multi- rectangles, remaining the largest posterior probabilitywindow and suppressing the overlapped windows. In the classifying process, the candidate region is judged as pedestrian region based on the posterior probability in SVM and LeNet. Experimental results show that this algorithm can get higher recognition rate and recall rate compared with HOG-SVM and LeNet algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第5期169-173,共5页 Computer Engineering
基金 国家自然科学基金(61103136) 武汉工程大学创新基金(CX2015057)
关键词 行人检测 权重模板 支持向量机 非极大值抑制算法 卷积神经网络 pedestrian detection weighting template Support Vector Machine (SVM) Non-Maximum Suppression ( NMS ) algorithm Convolutional Neural Network(CNN)
作者简介 邹冲(1992-),男,硕士研究生,主研方向为机器视觉、智能计算; 蔡敦波(通信作者),副教授; 赵娜,硕士研究生; 刘莹,硕士研究生; 赵彤洲,副教授。
  • 相关文献

参考文献4

二级参考文献101

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 5Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 6Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 7Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 8Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 9Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 10Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.

共引文献246

同被引文献88

引证文献12

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部