期刊文献+

滚动轴承的MSE和PNN故障诊断方法 被引量:16

Fault Diagnosis of Rolling Bearings Using MSE and PNN
在线阅读 下载PDF
导出
摘要 针对滚动轴承不同运行状态振动信号具有不同复杂性的特点,提出一种新的基于多尺度熵(multiscale entropy,MSE)和概率神经网络(probabilistic neural networks,PNN)的滚动轴承故障诊断方法。该方法首先利用MSE方法对滚动轴承振动信号进行特征提取,并将其作为PNN神经网络的输入,再利用PNN自动识别轴承故障类型及故障程度。实验数据包括不同故障类型和不同故障程度样本,结果表明,相比于小波包分解和PNN结合的诊断方法,提出的方法具有更高的诊断精度,能有效实现滚动轴承故障类型及程度的诊断。 Considering different levels of complexity of vibration signals of rolling bearings in different operatingconditions, a novel fault diagnosis method has been proposed based on the multiscale entropy (MSE) and probabilisticneural networks (PNN). Fault feature vector is firstly extracted from the vibration signals using MSE and then provided toPNN neural network as the input. The PNN network will identify the bearing fault type and severity level simultaneously.The experimental data are collected from an induction motor bearing involving various fault types and severity levels. Theresults demonstrate that the proposed method has a higher accuracy in rolling bearing fault diagnosis than the method of thecombination of wavelet packet decomposition with PNN.
出处 《噪声与振动控制》 CSCD 2014年第6期169-173,共5页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51205130 51265010) 江西省教育厅科技项目(GJJ12318) 江西省自然科学基金项目(20132BAB216029)
关键词 振动与波 多尺度熵 概率神经网络 滚动轴承 故障诊断 vibration and wave multiscale entropy PNN rolling bearing fault diagnosis
作者简介 张磊(1989-),男,湖北孝感人,硕士研究生,主要研究方向:工程信号处理与机械故障诊断. 熊国良,男,博士生导师.E-mail:lzhang0712@126.com
  • 相关文献

参考文献11

二级参考文献47

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:149
  • 2梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155. 被引量:20
  • 3VANIA A, PENNACCHI P. Experimental and theoretical application of fault identification measures of accuracy in rotating machine diagnostics [J]. Mechanieal Systems and Signal Processing,2004,18(6):329-352.
  • 4Huang N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond A,1988,454:903-995.
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6Babacan SD, Sayood K. Predictive Image Compression Using Conditional Averages[C]. IEEE Proceedings Data Compression Conference, 2004. 524-524.
  • 7Simard PY, Malvar HS, Rinker J, et d. A Foreground/Dackground Separation Algorithm for Image Compression[C], IEEE Proceedings of Data Compression Conference, 2004. 498-507.
  • 8Nikolaou N G.Rolling element bearing fault diagnosis using wavelet packets.NDT&E International 35,2002,197-205
  • 9Mallat S,Hwang W L.Singularity Detection and Processing with Wavelet[J].IEEE Trans on IT,1992,38(2):617-643
  • 10Donobo D L.De-Noising by Soft-Thresholding[J].IEEE Trans on IT,1995,41(3):613-627

共引文献115

同被引文献142

引证文献16

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部