期刊文献+

旋转机械故障诊断的神经网络方法研究 被引量:9

Research on the Neural Network in Rotating Machinery Fault Diagnosis
在线阅读 下载PDF
导出
摘要 BP神经网络具有较好的非线性映射能力,可以描述频率特征和故障之间的关系,而概率神经网络学习规则简单、训练速度快、避免局部极小和反复训练的问题。根据两种神经网络的原理选择合适的参数建立两个旋转机械故障诊断模型,并利用模型对某旋转机械的故障数据进行处理,结果显示两种网络在故障诊断方面的实用价值。通过对故障数据的结果对比可以看到PNN网络比BP网络具有更好的容错能力。 BP neural network is effective for dealing with non-liner mapping which could describe the relations between frequency characters and faults. Probabilistic neural network ( PNN) is simple in learning rules and rapid in training, which could void the problems of the local optimization and the repeating training. Two models for rotation machinery fault diagnosis are established by using appropriate parameters according to the theory of two neural networks. The fault data of some rotation machineries is dealt with by using the models, and the result shows the applied value of the neural networks in the fault diagnosis. Comparing the result of the fault data, PNN neural network is better than BP neural network in the fault-tolerant capability.
出处 《噪声与振动控制》 CSCD 北大核心 2008年第1期85-88,共4页 Noise and Vibration Control
关键词 振动与波 BP神经网络 PNN神经网络 旋转机械 故障诊断 vibration and wave BP neural network PNN rotation machinery fault diagnosis
作者简介 栾美洁(1982-),女,山东省烟台栖霞市人,在读硕士生主要研究方向为智能故障诊断、数字信号处理。
  • 相关文献

参考文献10

  • 1杜清玲,郝秀清,刘海波,王相友.基于模糊神经网络的旋转设备故障模式识别[J].农业机械学报,2001,32(4):92-95. 被引量:2
  • 2Babacan SD, SayoodK. Predictive Image Compression Using ConditionalAverages [ C ]. IEEE Proceedings Data Compression Conference, 2004. 524- 524.
  • 3Simard PY, Malvar HS, Rinker J, et al. A Foreground/ Background Separation Algorithm for Image Compression [ C ], IEEE Proceedings of Data Compression Conference, 2004. 498 - 507.
  • 4Kavuri SN. Venkatasubramanian V. Neural Network Decomposition Strategies for Large-scale Fault [ J ]. Int. J. Control, 1994,59 ( 3 ) :767 - 792.
  • 5钟秉林,黄仁.机械故障诊断学.第2版[M].北京:机械工业出版社,2003.100-101,128,145-149.
  • 6Speeht D F. Probabilistie Neural Networks [ J ]. Neural Networks, 1990, 1 (3) : 109 - 118.
  • 7Raghu P P,Yegnanarayana B. Supervised Texture Classification Using a Probabilistic Neural Network and Constraint satisfaction model [ J ]. IEEE Trans. On Neural Networks, 1998, 9(3) :516 - 522.
  • 8张建华,侯国莲,孙晓刚,袁桂丽.采用概率神经网络的汽轮机故障诊断方法[J].动力工程,2005,25(5):698-701. 被引量:18
  • 9曹永刚,周玲,丁晓群,马文静.基于概率神经网络的电力变压器故障诊断[J].继电器,2006,34(3):9-11. 被引量:25
  • 10熊建秋,李祚泳,汪嘉杨,徐婷婷.基于PNN的水轮发电机组振动故障诊断[J].水力发电,2005,31(7):55-57. 被引量:11

二级参考文献19

共引文献51

同被引文献60

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部