期刊文献+

基于精细复合多尺度散布熵与XGBoost的海面小目标检测方法 被引量:2

Small target detection method based on refined composite multiscale dispersion entropy and XGBoost
在线阅读 下载PDF
导出
摘要 针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XGBoost网络进行特征分类,通过模型训练,实现海面小目标检测。利用IPIX雷达实测数据库,在#54、#311、#320海情HV极化方式下检测率分别达到了93.33%、92.38%、95%,相较于图连通密度检测法平均提升12%,证明了RCMDE-XGBoost检测方法有效。 Aiming at the problem that the traditional floating small target feature detection method is difficult to extract the target feature effectively,this paper analyzes the feature of small target on the sea surface,and studies the principle of fine composite multi-scale dispersion entropy(RCMDE).A small target detection method based on RCMDE-XGBoost is proposed.The signal was de-noised by using variational mode decomposition,the multi-scale features of the target were extracted by fine composite multi-scale dispersion entropy,the multi-dimensional feature matrix was constructed and input into XGBoost network for feature classification,and the small target detection on the sea surface was realized through model training.Using the IPIX radar measurement database,the detection rate of#54,#311,#320 HV polarization mode reaches 93.33%,92.38%,95%respectively,which is 12%higher than the graph connected density detection method on average,proving the effectiveness of RCMDE-XGBoost detection method.
作者 王海峰 行鸿彦 陈梦 赵迪 李瑾 Wang Haifeng;Xing Hongyan;Chen Meng;Zhao Di;Li Jin(Jiangsu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science&Technology,Nanjing 210044,China;Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science&Technology,Nanjing 210044,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期12-20,共9页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(62171228) 国家重点研发计划(2021YFE0105500)项目资助
关键词 精细复合多尺度散布熵 XGBoost 微弱信号检测 海杂波 refined composite multiscale dispersion entropy XGBoost weak signal detection sea clutter
作者简介 王海峰,2020年于南京信息工程大学获得学士学位,现为南京信息工程大学研究生,主要研究方向为微弱信号检测。E-mail:wanghf1997@qq.com;通信作者:行鸿彦,1983年于太原理工大学获得学士学位,1990年于吉林大学获得硕士学位,2003年于西安交通大学获得博士学位,现为南京信息工程大学教授、博士生导师,主要研究方向为气象仪器设计与计量、信号检测与处理等。E-mail:xinghy@nuist.edu.cn;陈梦,2020年于淮阴师范学院获得学士学位,现为南京信息工程大学研究生,主要研究方向为时间延迟估计、信号处理。E-mail:2630255937@qq.com
  • 相关文献

参考文献12

二级参考文献123

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:90
  • 2张君,韩璞,董泽,潘笑.基于小波变换的振动信号分析中能量泄漏的研究[J].中国电机工程学报,2004,24(10):238-243. 被引量:19
  • 3肖燕,黄成军,郁惟镛,江秀臣.基于小波和分形分析的GIS局部放电信号特征提取[J].电力系统自动化,2006,30(6):66-69. 被引量:10
  • 4金宁德,董芳,赵舒.气液两相流电导波动信号复杂性测度分析及其流型表征[J].物理学报,2007,56(2):720-729. 被引量:36
  • 5HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454: 903-995.
  • 6YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109.
  • 7AHMET Mert and AVDIN Akan. Detrended fluctuation thresholding for empirical mode decomposition based denoising[J]. Digital Signal Processing, 2014, 32: 48-56.
  • 8FAIRCHILD D P and NARAYANAN R M. Classification of human motions using empirical mode decomposition of human micro-Doppler signatures[J]. IET Radar, Sonar & Navigation, 2014, 8(5): 425-434.
  • 9YUAN Bin, CHEN Zengping, and XU Shiyou. Micro- Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1285-1298.
  • 10SONG Rui, GUO Huadong, and LIU Guang. Improved Goldstein SAR Interferogram filter based on empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 399-403.

共引文献203

同被引文献33

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部