期刊文献+

模糊聚类与SVM诊断模拟电路单软故障的方法 被引量:9

Fuzzy Clustering and SVM Method for Diagnosing Analog Circuits Single Soft Fault
在线阅读 下载PDF
导出
摘要 针对低可测性模拟电路中存在的模糊组问题,提出一种模拟电路单个软故障诊断的方法.该方法对被测电路的故障进行模糊聚类,根据聚类的有效性指标自适应确定聚类数,并利用聚类的信息来确定可测元件集,引入支持向量机对故障进行分类识别.支持向量机结构简单、泛化能力强.最后,以模拟和混合信号测试标准电路证实了文中方法的有效性. A method for diagnosing single soft fault in analog circuits with low testability is presented in this paper. The faults of circuit under test are analyzed by fuzzy clustering algorithm and the fault classes are adaptively obtained by using the fuzzy clusters" validity indices. The testable component set is determined by the cluster results. Support vector machine (SVM) is introduced to identify the analog circuit faults. SVM has advantages of simple structure and strong generalization ability. Experimental results on analog and mixed-signal benchmark circuits demonstrated the efficiency of the proposed method for diagnosing analog circuits' single soft fault which based on fuzzy clustering analysis and SVM.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第5期612-617,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60372001,90407007)
关键词 模拟电路 故障诊断 模糊聚类 支持向量机 analog circuits fault diagnosis fuzzy clustering support vector machine
作者简介 sunyongk@uestc. edu. cn 孙永奎,男,1972年生,博士研究生,主要研究方向为模拟电路故障诊断、智能信息处理. 陈光[礻禹],男,1939年生,教授,博士生导师,主要研究方向为集成电路测试、信号处理等. 李辉,男,1963年生,博士,教授,主要研究方向为智能信息处理、ERP等.
  • 相关文献

参考文献13

  • 1Wang P, Yang S, A new diagnosis approach for handling tolerance in analog and mixed signal circuits by using fuzzy math [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2005, 52(10):2118- 2127
  • 2Aminian F, Aminian M. Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor[J]. Journal of Electronic Testing, 2001, 17 (1) : 29-36
  • 3王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:13
  • 4Cannas B, Fanni A, Manetti S, et al. Neural network-based analog fault diagnosis using testability analysis[J]. Neural Computing & Applications, 2004, 13(4): 288-298
  • 5Starzyk J A, Pang J, Manetti S, et al. Finding ambiguity groups in low testability analog circuits [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(8), 1125-1137
  • 6Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297
  • 7CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 8Wang W N, Zhang Y J. On fuzzy cluster validity indices[J]. Fuzzy Sets and Systems, 2007, 158(19): 2095-2117
  • 9Pakhira M K, Bandyopadhyay S, Maulik U. Validity index for crisp and fuzzy clusters[J]. Pattern Recognition, 2004, 37(3) : 487-501
  • 10Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689

二级参考文献7

  • 1MartinT Hagan HowardB Demuth MarkH Beale 戴葵 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 2L.S.Milor.A tutorial introduction to research on analog and mixed-signal circuit testing.IEEE Trans.Circuits Syst.II.,1998,45(10):1389~1407.
  • 3P.Duhamel.Automatic test generation techniques for analog circuits and systems:A review.IEEE Trans.Circuits Syst.,1979,26(7):411~439.
  • 4F.Aminian, M.Aminian.Analog fault diagnosis of actual circuits using neural networks.IEEE Trans.Instr & Meas.,2002,51(3):544~550.
  • 5F.Cabral Jr.,Y.Teruya.Using MLPS for fault analysis in analog circuits.IEEE Pro.Circuits Syst.,1995,2:1172~1174.
  • 6斳蕃.神经计算智能基础原理·方法.成都:西南交通大学出版社,2000.
  • 7谭阳红,何怡刚,陈洪云,吴杰.大规模电路故障诊断神经网络方法[J].电路与系统学报,2001,6(4):25-28. 被引量:33

共引文献122

同被引文献107

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部