期刊文献+

SVM在基因表达数据分类中的研究和应用 被引量:2

Research and Application of SVM in Classification of Gene Expression Data
在线阅读 下载PDF
导出
摘要 介绍了一种使用基因芯片实验产生的基因表达数据对功能基因进行分类的方法,该方法是以支持向量机(SVM)理论为基础的。文中描述了径向基函数SVM,与其它SVM相比,径向基函数SVM在基因分类中有更好的性能。SVM的理论基础是统计学习理论,它不仅结构简单,而且技术性能高,泛化能力强,在基因表达式分类中表现出有很多优点,成为热点研究方向。 Introduce a method of functionally classifying genes using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector mschine(SVMs). Describe SVMs that uses different similarity metrics including a simple dot product of gene expression vectors, polynomial version of the dot product, and a radial hasis function, Compared to the other SVM similarity metrics,the radial basis function SVM appears to provide superior performance in identifying sets of genes with a common function using expression data. In addition,SVM performance is compared to four standard machine learning algorithms. SVMs have many features that make them attractive for gene expression analysis,including their flexibility in chosing a similarity function, sparseness of solution when dealing with large data sets,the ability to handle large feature spaces,and the ability to identify outliers.
作者 詹超 胡江洪
出处 《计算机技术与发展》 2006年第3期107-109,共3页 Computer Technology and Development
关键词 基因微序列 基因表达式 支向量机 核函数 模式分类 gene microarray gene expresslon support vector machine kernel functlon pattern classification
作者简介 詹超(1979-),男,湖北黄冈人,硕士研究生,从事支持向量机、模式识别研究;导师:熊盛武,硕士生导师,教授,研究领域为遗传算法、支持向量机、模式识别、数据挖掘。
  • 相关文献

参考文献8

  • 1CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2289
  • 3Poggio T. An overview of statistical learning theory[ J ]. IEEE Trans Neural Networks, 1999,10(5) :35 - 45.
  • 4Cristianini N, Shawe - Taylor J. An Introduction to Support Vector Machines and Other Kernel - based Learning Methods[M]. Cambridge,England: Cambridge University Press,2000.
  • 5Joaehims T. Making large- scale SVM Learning Practical Advaces in Kernel Methods - Support Vector Learning [ M ].America: MIT Press, 1999.
  • 6Molla M,Waddell M, Page D, et al. Using Machine Learning to Design and Interpret Gene- Expression Mieroarray[ J ]. AI Magazine,2004,25:32 - 35.
  • 7Dubitzky W,Granzow M,Berrar D. Data Mining and Machine Learning Methods for Mieroarray Analysis[A]. In: Lin S M,Johnson K F. Methods of Miaroarray Data Analysis - Papers from CAMDA 2000[ C]. Boston, Kluwer: Academic Publishers,2001.
  • 8Cho S,Won H. Machine Learning in DNA Microarray Analysis for Cancer Classification [ M ]. APBC, Cambridge, England:Cambridge University Press,2003.189 - 198.

二级参考文献1

共引文献2386

同被引文献26

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:69
  • 2昂清,王卫东.生物标记物的数据挖掘在临床医学中的研究[J].科学技术与工程,2007,7(6):1237-1239. 被引量:2
  • 3昂清,王卫东.自组织特征映射在人群健康风险评估中的应用研究[J].科学技术与工程,2007,7(9):2037-2041. 被引量:1
  • 4Venter, J.C, Adams, M.D, Myers, E.et al.The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351.
  • 5International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822): 860-921.
  • 6Wei Zhang, llya Shmulevich. Computational and statistical approaches to genomics[M], kluwer academic publishers, norwell, Massachusetts 02061 USA, 2002.
  • 7Alizadeh AA, Eisen MB, Vavis Re, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000, 403(6769): 503-511.
  • 8Golub TR, Slonim DK, Tainayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 286(5439): 531-537.
  • 9Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290 (5500): 2319-2323.
  • 10Ross DT, Scherf U, Eisen MB, et al. Systematic variation in gene expression patterns in human cancer cell lines[J]. Nat Genet 2000, 24(3): 227-235.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部