期刊文献+

灵敏度分析和SVM诊断模拟电路故障的方法 被引量:4

Fault Diagnosis Method for Analog Circuits Using Sensitivity Analysis and SVM
在线阅读 下载PDF
导出
摘要 针对低可测性模拟电路中存在的模糊组问题,提出了一种模拟电路故障诊断的新方法。该方法首先计算被测电路网络传递函数零极点的灵敏度,利用零极点灵敏度提供的信息来对被测电路进行模糊组的划分,组成可诊断的元件集,并引入了支持向量机完成对故障的分类识别。零极点的灵敏度分析确定了被测电路可诊断的元件组,支持向量机结构简单、泛化能力强,实验结果证明了基于灵敏度分析和支持向量模拟电路故障诊断方法的有效性,故障诊断率大于99%。 A fault diagnosis method for analog circuits with low testability using sensitivity analysis and support vector machine (SVM) is presented in this paper. The transfer function poles and zeros sensitivity of circuit under test is analyzed. The ambiguity group is determined according to the poles and zeros sensitivity with respect to the components and the testable components set is obtained. The poles and zeros sensitivity analysis theoretically determines all of the diagnosable circuit components and SVM has advantages of simple structure and strong generalization ability. Experimental results prove that the proposed method for diagnosing analog circuit fault using poles and zeros sensitivity analysis and SVM is effective and the fault diagnosis accuracy of the method is more than 99%.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第6期971-974,992,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60372001 90407007)
关键词 模拟电路 故障诊断 零极点 灵敏度分析 支持向量机 analog circuits fault diagnosis poles and zeros sensitivity analysis SVM
作者简介 孙永奎(1972~),男,博士。主要从事模拟电路故障诊断和智能信息处理等方面的研究.
  • 相关文献

参考文献12

  • 1WANG P, YANG S. A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2005, 52(10): 2118-2127.
  • 2王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:13
  • 3CANNAS B, FANNI A, MANETTI S, et al. Neural network-based analog fault diagnosis using testability analysis[J]. Neural Computing & Applications, 2004, 13(4): 288-298.
  • 4STARZYK J A, PANG J, MANETTI S, et al. Finding ambiguity groups in low testability analog circuits[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(8): 1125-1137,.
  • 5VAPNIK V N. Statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 6CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning mechods[M]. Beijing: Publishing House of Electronics Industry, 2000.
  • 7LEE J Y, HUANG X, ROHRER R. A pole and zero sensitivity calculation in asymptotic waveform evaluation[J] IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992, 11(5): 586-597.
  • 8NIKOLOVA N K, BANDLER J W, BAKR M H. Adjoint techniques for sensitivity analysis in high-frequency structure CAD[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 403-419.
  • 9HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
  • 10HSU C W, CHANG C C, LIN C J. A practical guide to support vecor classification[EB/OL]. [2007-09-19]. http:// www.esie.ntu.edu.tw/-cj lin/papers/guide/guide.pdf.

二级参考文献7

  • 1MartinT Hagan HowardB Demuth MarkH Beale 戴葵 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 2L.S.Milor.A tutorial introduction to research on analog and mixed-signal circuit testing.IEEE Trans.Circuits Syst.II.,1998,45(10):1389~1407.
  • 3P.Duhamel.Automatic test generation techniques for analog circuits and systems:A review.IEEE Trans.Circuits Syst.,1979,26(7):411~439.
  • 4F.Aminian, M.Aminian.Analog fault diagnosis of actual circuits using neural networks.IEEE Trans.Instr & Meas.,2002,51(3):544~550.
  • 5F.Cabral Jr.,Y.Teruya.Using MLPS for fault analysis in analog circuits.IEEE Pro.Circuits Syst.,1995,2:1172~1174.
  • 6斳蕃.神经计算智能基础原理·方法.成都:西南交通大学出版社,2000.
  • 7谭阳红,何怡刚,陈洪云,吴杰.大规模电路故障诊断神经网络方法[J].电路与系统学报,2001,6(4):25-28. 被引量:33

共引文献12

同被引文献31

  • 1潘孝礼,肖冬,常玉清,王福利,毛志忠.基于极限学习机的软测量建模方法研究[J].计量学报,2009,30(4):324-327. 被引量:5
  • 2雷勇,陈光,杜天军.基于灵敏度的模拟电路测试参数分析[J].系统工程与电子技术,2005,27(1):13-15. 被引量:5
  • 3AMINIAN M, AMINIAN E A modular fault-diagnostic system for analog electronic circuits using neural net- works with wavelet transform as a preprocessor[J]. IEEE Transactions Instrument Measure, 2007, 56 (5) : 1546-1554.
  • 4AMINIAN M, AMINIAN F. Neural-network based ana- log circuit fault diagnosis using wavelet transform as pre- processor[J]. IEEE Transactions on Circuit System Ⅱ: Ex- port Briefs,2000,47(2) : 151-156.
  • 5AMINIAN M, AMINIAN F. Fault diagnosis of nonlinear circuits using Neural Networks with wavelet and Fourier transforms as preprocessors[J]. Journal of Electronic Test- ing,2001,17:471-481.
  • 6AMINIAN M, AMINIAN F. Analog fault diagnosis of ac- tual circuits using neural networks[J]. IEEE Transactions on Instrument Measure, 2002,51 (3) : 544-550.
  • 7HUANG J, HU X G, YANG F. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker[J]. Measurement, 2011,44: 1018-1027.
  • 8LONG B, TIAN S L, MIAO Q, et al. Research on fea- tures for diagnostics of filtered analog eircuits based on LS-SVM[J]. IEEE Autotestcon, Baltimore, MD, 2011,9: 360-366.
  • 9LONG B, TIAN S L, WANG H J. Diagnostics of filtered analog circuits with tolerance based on LS-SVM using frequency features[J]. Journal of Electronic Testing, 2012,28:291-300.
  • 10XUE H, CHEN S C, YANG Q. Structural support vector machine[Y]. Lecture Notes in Computer Science, 2008, 5263( 1 ) : 501=511.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部