期刊文献+

基于支持向量机与最近邻分类器的模拟电路故障诊断新策略 被引量:21

New strategy for analogue circuit fault diagnosis based on support vector machines and nearest neighbor classifier
在线阅读 下载PDF
导出
摘要 针对模拟电路的故障诊断和定位问题,提出了一种基于支持向量机分类器(SVC)和最近邻分类器(NNs)的模拟电路故障诊断新策略,利用SVC解决高维故障样本的分类问题,而采用NNs解决故障样本间的重叠问题。首先建立"1-v-r"结构的SVC对电路故障样本进行训练,并根据训练参数构建故障字典;其次,在测试阶段,根据算法决定利用SVC或NNs对未知样本进行测试。本文设计的故障分类器方法简单,结构确定,通过对两个模拟电路的实验表明,所提出的方法性能要优于常规的"1-v-r"支持向量机分类器;与"1-v-1"支持向量机分类器的诊断性能较为接近,但测试时间较后者显著减少,较为适合模拟电路的故障诊断。 Focusing on the issue of analog circuit fault diagnosis and location, this paper proposes a novel strategy of fault diagnosis by combing the support vector machine classifier (SVC) and the nearest neighbor (NN) classifier. The SVC is used to classify the high-dimension fault samples, and the NN classifier is used to recognize the overlapped samples. Firstly, the "1-v-r" SVC is utilized to train the fault samples; after training, the parameters are stored as a fault dictionary. Secondly, in the test stage, the SVC or the NN classifier is employed, depending on the results of the algorithm, to diagnose the unknown sample. The classifier proposed here has a simple but fixed structure. The simulation for two analog circuits reveals that the performance of the proposed fault classifier is superior to that of the conventional "1-v-r" SVC, close to that of the "1-v-1" SVC, and the test time consumed is less than that of the "1-v-1" SVC remarkably; the proposed method is suitable for diagnosing analogue circuits.
作者 崔江 王友仁
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第1期45-50,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60871009 60374008 60501022) 航空科学基金(2006ZD52044)资助项目
关键词 模拟电路 故障诊断 支持向量机 最近邻分类器 analogue circuit fault diagnosis support vector machine nearest neighbor classifier
作者简介 崔江,2003年于南京航空航天大学获得硕士学位,现为南京航空航天大学讲师、博士研究生。主要研究方向为模拟电路测试和故障预测、智能信息处理等。E-mail:cuijiang@nuaa.edu.cn王友仁,1996年于南京航空航天大学获得博士学位,现为南京航空航天大学教授、博士生导师,研究方向为检测技术与信号处理、机载设备健康监测、仿生硬件与智能系统。E—mail:wangyrac@nuaa.edu.cn
  • 相关文献

参考文献12

  • 1ALLIPI C, CATELANI M, FORT A, et al. SBT soft fault diagnosis in analog electronic circuits: a sensitivity-based approach by randomized algorithms [J].IEEE Transactions on Instrumentation and Measurement, 2002, 51(5):1116-1125.
  • 2孙永奎,陈光,李辉.模糊聚类与SVM诊断模拟电路单软故障的方法[J].计算机辅助设计与图形学学报,2008,20(5):612-617. 被引量:9
  • 3SALAT R, OSOWSKI S. Analog filter diagnosis using support vector machine[C]. ECCTD'03, Krakow, 2003: 421-424.
  • 4SIWEK K, OSOWSKI S, MARKIEWICZ T. Support vector machine for fault diagnosis in electrical circuits[C] NORSIG'06, 2006: 342-345.
  • 5连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报,2007,28(6):1029-1034. 被引量:20
  • 6WANG A N, LIU J F, LI H,et al. A novel algorithm for fault diagnosis of analog circuit with tolerances using improved binary-tree svc based on somnn clustering[C]. ICNC'07, 2007, 1:491-496.
  • 7HSU C W, LIN C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions On Neural Networks, 2002, 13(2): 415-425.
  • 8ALIPPI C, CATELANI M, selection of test frequencies FORT A, et al. Automated for fault diagnosis in analog electronic Circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1033-1043.
  • 9ZHANG Y, WEI X Y, JIANG H F. One-class classifier based on SBT for analog circuit fault diagnosis[J]. Measurement, 2008, 41: 371-380.
  • 10MEHRAN A, FARZAN A. A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor[J]. IEEE Transactions On Instrumentation and Measurement, 2007, 56(5): 1546-1554.

二级参考文献38

  • 1王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:13
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3AMINIAN M, AMINIAN F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor [J]. Circuits and Systems Ⅱ: Analog and Digital Signal Processing, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2000, 47, 151-156.
  • 4AMINIAN F, AMINIAN M. Fault diagnosis of analog circuits using Bayesian neural networks with wavelet transform as preprocessor [J]. Journal of Electronic Testing: Theory and Applications, 2001, 17, 29-36.
  • 5CATELANI M, FORT A. Soft faults detection and isolation in analog circuits: some results and ac comparison between a fuzzy approach and radial basis function networks [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 196-202.
  • 6WANG A, LIU J. A novel fault diagnosis of analog circuit algorithm based on incomplete wavelet packet transform and improved balanced binary-tree SVMs [J].Bio-Inspired Computational Intelligence and Applications, 2007, 482-493.
  • 7VAPNIK V N. Statistical learning theory [M]. New York: Springer, 1995.
  • 8LIN C F, WAN SH D. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 464-471.
  • 9LIN Y, LEE Y, WAHBA G. Support vector machines for classification in nonstandard situations [J]. Machine Learning, 2002, 46: 191-202.
  • 10HUANG H P, LIU Y H. Fuzzy support vector machines for pattern recognition and data mining [J]. International Journal of Fuzzy Systems, 2002, 4 (3): 826-835.

共引文献53

同被引文献201

引证文献21

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部