在纳米工艺水平下,负偏置温度不稳定性(negative bias temperature instability,NBTI)成为影响集成电路可靠性的关键性因素.NBTI效应导致晶体管阈值电压增加,老化加剧,最终使电路时序违规.为了缓解电路的NBTI效应,定义了时延关键性权值...在纳米工艺水平下,负偏置温度不稳定性(negative bias temperature instability,NBTI)成为影响集成电路可靠性的关键性因素.NBTI效应导致晶体管阈值电压增加,老化加剧,最终使电路时序违规.为了缓解电路的NBTI效应,定义了时延关键性权值和拓扑结构关键性权值.使用该双权值识别的关键门更加精确,并且考虑到了关键门的扇入门为非门的情况,即将非门视为单输入与非门,并将其替换为双输入与非门,从而能更加全面地防护关键门.应用基于双权值的门替换方法对基于45 nm晶体管工艺的ISCAS85基准电路实验结果显示:当电路时序余量为5%时,不考虑非门替换时电路的时延改善率为38.29%,考虑非门替换时电路的时延改善率为60.66%.展开更多
针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采...针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采用电荷俘获-释放(trapping-detrapping,T-D)机制,结合线性分析和数据拟合方法,建立了N型金属氧化物半导体(negative channel metal oxide semiconductor,NMOS)管PBTI效应引起的基本逻辑门单元的时延退化预测模型。仿真实验结果表明,采用该模型的电路PBTI老化预测结果与HSpice软件仿真得到的时延预测结果相比,平均误差为2%;关键路径时序余量评估实验表明,与基于R-D机制的老化时延模型相比,在相同的电路生命周期要求下,该模型需要的时序余量更小。展开更多
当前纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路设计中,利用电源门控(power gating,PG)技术来降低静态功耗已成为一种趋势。随着集成电路工艺尺寸的不断缩小,负偏置温度不稳定性(negative bias t...当前纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路设计中,利用电源门控(power gating,PG)技术来降低静态功耗已成为一种趋势。随着集成电路工艺尺寸的不断缩小,负偏置温度不稳定性(negative bias temperature instability,NBTI)带来的电路老化问题越来越严重。当Header型PG电路处于正常工作模式时,休眠管(sleep transistor,ST)会受到NBTI老化效应的影响,导致PG电路的性能损失加重。文章通过对PG电路的NBTI老化特性分析,提出了考虑NBTI的PG电路性能损失模型;利用PG电路的NBTI老化特性将ST进行分组,并通过间断接通ST,等效于动态调节ST的尺寸或导通电阻,来减小由ST老化引起的PG电路性能损失。结果表明,动态ST尺寸方法与传统ST尺寸方法相比,可以使PG电路的使用寿命提高30%左右,并且提出的模型与HSPICE仿真结果所得到的趋势相吻合。展开更多
文摘在纳米工艺水平下,负偏置温度不稳定性(negative bias temperature instability,NBTI)成为影响集成电路可靠性的关键性因素.NBTI效应导致晶体管阈值电压增加,老化加剧,最终使电路时序违规.为了缓解电路的NBTI效应,定义了时延关键性权值和拓扑结构关键性权值.使用该双权值识别的关键门更加精确,并且考虑到了关键门的扇入门为非门的情况,即将非门视为单输入与非门,并将其替换为双输入与非门,从而能更加全面地防护关键门.应用基于双权值的门替换方法对基于45 nm晶体管工艺的ISCAS85基准电路实验结果显示:当电路时序余量为5%时,不考虑非门替换时电路的时延改善率为38.29%,考虑非门替换时电路的时延改善率为60.66%.
文摘针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采用电荷俘获-释放(trapping-detrapping,T-D)机制,结合线性分析和数据拟合方法,建立了N型金属氧化物半导体(negative channel metal oxide semiconductor,NMOS)管PBTI效应引起的基本逻辑门单元的时延退化预测模型。仿真实验结果表明,采用该模型的电路PBTI老化预测结果与HSpice软件仿真得到的时延预测结果相比,平均误差为2%;关键路径时序余量评估实验表明,与基于R-D机制的老化时延模型相比,在相同的电路生命周期要求下,该模型需要的时序余量更小。
文摘当前纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路设计中,利用电源门控(power gating,PG)技术来降低静态功耗已成为一种趋势。随着集成电路工艺尺寸的不断缩小,负偏置温度不稳定性(negative bias temperature instability,NBTI)带来的电路老化问题越来越严重。当Header型PG电路处于正常工作模式时,休眠管(sleep transistor,ST)会受到NBTI老化效应的影响,导致PG电路的性能损失加重。文章通过对PG电路的NBTI老化特性分析,提出了考虑NBTI的PG电路性能损失模型;利用PG电路的NBTI老化特性将ST进行分组,并通过间断接通ST,等效于动态调节ST的尺寸或导通电阻,来减小由ST老化引起的PG电路性能损失。结果表明,动态ST尺寸方法与传统ST尺寸方法相比,可以使PG电路的使用寿命提高30%左右,并且提出的模型与HSPICE仿真结果所得到的趋势相吻合。