期刊文献+

基于LCD-SVD的采煤机轴承故障诊断方法研究

Research on a coal cutter bearing fault diagnosis method based on LCD-SVD
在线阅读 下载PDF
导出
摘要 针对采煤机轴承在复杂工况下易受噪声干扰、导致传统故障诊断方法失效的问题,提出一种基于局部特征尺度分解(LCD)和奇异值分解(SVD)的协同诊断方法。该方法首先利用LCD对振动信号进行多尺度分解,提取包含故障信息的本征尺度分量(ISC),并基于改进的包络熵准则筛选有效ISC以去除冗余信息。然后利用SVD对筛选后的ISC进行二次降噪,增强故障特征。最终通过包络谱分析提取特征频率,实现对不同故障类型的识别。在MG-1200型采煤机现场试验中,该方法成功识别了正常运行、早期故障和严重故障3种工况,且提取的故障特征频率与理论计算值和实际情况一致。研究结果表明,该方法能够有效抑制噪声干扰,准确提取微弱故障特征,可为采煤机轴承故障诊断提供一种新的技术手段和思路。 Addressing the issue that coal mining machine bearings are susceptible to noise interferenceunder complex working conditions,leading to the failure of traditional fault diagnosis methods,this paperproposes a cooperative diagnosis method based on Local Characteristic-scale Decomposition(LCD)and Singular Value Decomposition(SVD).The method first employs LCD to perform multi-scale decompositionon vibration signals,extracting Intrinsic Scale Components(ISC)containing fault information,andthen filters effective ISC based on an improved envelope entropy criterion to remove redundant information.Subsequently,SVD is utilized to perform secondary noise reduction on the filtered ISC,enhancing fault features.Finally,characteristic frequencies are extracted through envelope spectrum analysis to realize the identification of different fault types.In a field test using the MG-1200 coal mining machine,the method successfully identified three operating conditions:normal operation,earlystage fault,and severe fault,and the extracted fault characteristic frequencies were consistent withtheoretical calculations and actual conditions.The research results indicate that this method can effectively suppress noise interference and accurately extract weak fault features,providing a new technicalmeans and approach for fault diagnosis of coal mining machine bearings.
作者 王勇 孙晓宇 李恒 WANG Yong;SUN Xiaoyu;LI Heng(Beijing China Coal Mine Engineering Com pany Limited,Beijing 100013,China;National Engineering Research Center of Deep Shaft Construction,Beijing 100013,China)
出处 《建井技术》 2025年第5期52-55,89,共5页 Mine Construction Technology
基金 国家自然科学基金资助项目(51874173)。
关键词 采煤机轴承 故障诊断 局部特征尺度分解 奇异值分解 coal cutter bearing fault diagnosis local characteristic-scale decomposition singular value
作者简介 王勇(1988-),男,四川泸州人,大学本科,工程师。E-mail:516559400@qq.com。
  • 相关文献

参考文献20

二级参考文献218

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部