期刊文献+

基于Stacking集成学习的电力系统故障诊断 被引量:5

Power System Fault Diagnosis Based on Stacking Ensemble Learning
在线阅读 下载PDF
导出
摘要 针对电力系统故障分类复杂度高、特征选择难度大、用单一模型进行预测诊断的准确率低的问题,提出一种基于Stacking集成学习的电力系统故障诊断的方法。通过对电路中的三相电流和电压进行分析并提取故障特征,采用Stacking集成学习方法对不同类型模型进行融合,并且通过硬投票法对电力系统中的故障进行检测与分类,以解决传统单一模型在电路系统故障类型检测中准确率低的问题。模型分类结果表明,基于多分类器融合的方法能够有效地检测和分类输电线路上的故障,所提模型的准确率可以达到97.8%,可以有效地分类故障类型。 In order to address the challenges of high complexity in power system fault classification,the difficulty in feature selection,and the low accuracy in predictive diagnosis using single models,this paper proposes a method for power system fault diagnosis based on Stacking ensemble learning.By analyzing the three-phase current and voltage in circuits and extracting fault features,this method applies Stacking ensemble learning to fuse different types of models,and a hard voting method is used to detect and classify faults within the power system to overcome the accuracy limitations of traditional single-model approaches in circuit system fault detection.The model classification results show that the multi-classifier fusion approach effectively detects and classifies faults in transmission lines,achieving an accuracy of up to 97.8%in fault type classification.
作者 徐福聪 李泽科 范海威 许力 张章学 XU Fucong;LI Zeke;FAN Haiwei;XU Li;ZHANG Zhangxue(State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350003,China;Fujian Provincial Key Lab of Network Security and Cryptology,Fujian Normal University,Fuzhou 350117,China;Fujian Strait Information Technology Co.,Ltd.,Fuzhou 350003,China)
出处 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第6期40-46,共7页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(62471139) 中央引导地方科技发展专项(2021L3032)。
关键词 故障分类 Stacking融合 硬投票 电力系统 fault classification Stacking fusion hard voting power system
作者简介 通信作者:张章学(1978—),男,高级工程师,博士,研究方向为信息网络安全、密码应用。11171824@qq.com。
  • 相关文献

参考文献8

二级参考文献88

共引文献734

同被引文献52

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部