期刊文献+

An Interfacial Gel Electrode Patch with Tunable Hydrogen Bond Network for Electromyographic Sensing and Discrimination 被引量:3

原文传递
导出
摘要 The sensitivity and fidelity of surface electromyography(sEMG)signal monitoring is critical for muscle status and fatigue assessment,prosthetic control,and gesture recognition.However,the incompatible skin-electrode interface and complex electrophysiological environment restrict the sensitive acquisition and accurate analysis of sEMG signals.Focused on the impedance of the skin-electrode interface issue,we developed an interfacial gel electrode patch with a tunable hydrogen bond network to simultaneously achieve a conformal interface,suitable adhesion,and high conductivity for sEMG signal monitoring.By exploiting hydroxyethylidene diphosphonic acid(HEDP)and 2-hydroxyphosphono-acetic acid(HPAA)as hydrogen bonding regulators were introduced into the polyvinyl alcohol(PVA)-based hydrogel network to regulate the hydrogen bond cross-linking network.As a result,the balance of elastic modulus,adhesion,and electrical conductivity of PVA-HEDP-HPAA(PHH)hydrogel are achieved.The reliable electrodeskin interface is manipulated to achieve conformal contact by matching the elastic modulus,reducing the gap of electrode-skin interface by adhesion,and promoting ion and electron conduction by electrical conductivity.The PHH electrode patches exhibit a lower interfacial impedance(12.56 kΩ)and a signal-to-noise ratio of 38.09±1.28 dB for accurate analysis of muscle strength and evaluation of the fatigue state.With the assistance of the artificial neural network algorithm,seven gestures can be recognized with 100%prediction accuracy.The interfacial gel electrode patch contributes a bio-matching electrophysiological platform for prosthetic control,human–machine interaction,and clinical or athletic auxiliary monitoring.
出处 《CCS Chemistry》 CSCD 2024年第2期450-464,共15页 中国化学会会刊(英文)
基金 supported by the National Natural Science Foundation of China(grant nos.21874056 and 52003103) the National Key R&D Program of China(grant no.2016YFC1100502).
作者简介 Corresponding author:Fengyu Li,lifengyu@jnu.edu.cn。
  • 相关文献

参考文献3

二级参考文献2

共引文献24

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部