期刊文献+

宽范围无跳模外腔可调谐半导体激光器 被引量:13

Wide-range external-cavity tunable semiconductorlaser with mode-hopping free
在线阅读 下载PDF
导出
摘要 具有宽调谐范围、无跳模以及高光谱纯净度的半导体激光器在超精细光谱、相干检测和光纤智能感知等领域有着重要的应用。但是受到半导体激光器固有运转特性的制约,通过传统的单片集成式半导体激光器难以获得高光谱纯净度的宽范围可调谐激光输出。因此文中采用闪耀光栅作为外腔反馈元件,单角面度半导体增益芯片作为增益介质,通过Littman-Metcalf外腔振荡结构实现了1 480~1 580 nm的宽调谐范围、无模式跳变的线宽小于98.27 kHz的激光输出,在注入电流为410 mA的条件下获得了16.95 dBm的峰值功率、全范围功率优于14.96 dBm和边模抑制比优于65.54 dB的输出。相应的实验结果表明:采用机械刻划闪耀光栅的Littman-Metcalf结构用于半导体激光器,可很大程度的改善半导体激光器的综合性能。该研究有利于推动其在提升光频域反射仪测量精度方向的应用。 Objective External-cavity tunable semiconductor laser(ETSL)has been widely studied and acted as a prior selected laser source for its prestigious characteristics such as broad wavelength tuning range,single mode,narrow linewidth,and compactness.However,limited by the intrinsic operation characteristics of currently available semiconductor lasers,it is difficult to obtain a wide-range tunable laser beam output with high spectral purity directly generated by traditional monolithic semiconductor lasers.Particularly,most applications require that the output wavelength of the ETSL can be scanned continuously over time.Consequently,it is critical to build and maintain an ETSL system with a wide mode-hopping free tuning range. For this purpose, a Littman-Metcalf external-cavity oscillation structure is designed in this paper.Methods First, according to the principle and characteristics of the Littman-Metcalf external-cavity oscillationstructure, a 900 grooves/mm blazed grating is used as the external-cavity feedback element, single-angled facetgain chip is served as the laser gain medium (Fig.1). Then, the threshold current performance of the ETSL systemis characterized by measuring the output optical power at different lasing wavelengths to determine a minimumworking current (Fig.3(a)). Finally, the linewidth of the ETSL system with a wide mode-hopping free tuningrange at different lasing wavelengths are compared (Fig.6).Results and Discussions The designed total physical lengths of the laser cavity are changed to obtainsuperimposed optical spectra for different resonance wavelengths. The injection current is fixed at 410 mA andthe ambient temperature is adjusted at 25 ℃, and the tuning range results are highlighted (Fig.3(c)). The singlemodeoperation of different lasing wavelength can be clearly identified, and the side mode suppression ratio of thesystem satisfies the demand of optical frequency reflectormeter. Meanwhile, the peak output power of 16.95 dBm,full range power of better than 14.96 dBm are obtained (Fig.3(d)). In the current implementation, the overallphysical length of the ETSL cavity is designed to be about 50 mm, namely from the gain chip rear (left) outputfacet to the tuning mirror front facet, and corresponds to an axial mode spacing of 24 pm operating at 1 550 nm.The mode-hopping performance of external-cavity semiconductor laser with blazed grating is characterized byusing the wavelength difference measurement method, no mode-hopping can be observed in the wavelength rangeof 1 480-1 580 nm (Fig.4). Stability performance of the wavelength and output power are monitored using thecommercial wavelength meter (Fig.5), within a 130 mins duration, the designed ETSL has good wavelengthstability (±2.5 pm) and power stability (±0.035 dB). Based on the short delay self-heterodyne interferometry, thespectral linewidth is measured to be less than 98.27 kHz within the full tuning range, the minimum spectrallinewidth is 64.11 kHz around lasing wavelength of 1 570 nm (Fig.6).Conclusions A wide mode-hopping free and narrow linewidth external-cavity tunable semiconductor laser isdesigned, which is based on a classical Littman-Metcalf configuration. Meanwhile, the tuning characteristics andspectral linewidth of the ETSL are investigated experimentally. A wide mode-hopping free continuouswavelength tuning range of about 100 nm (namely, 1 480-1 580 nm) with a side mode suppression ratio of morethan 65.54 dB and an output power of more than 14.96 dBm over the whole tuning range can be achieved in along-term free running. The spectral linewidth performance of the designed tunable laser source measured usingshort delay self-heterodyne interferometry is less than 98.27 kHz. With the help of this designed tunable lasersource, it is helpful to promote its application in improving the measurement accuracy of optical frequencyreflectormeter. Future work shall focus on the optimization of the length of the laser cavity design to furtherreduce the spectral linewidth.
作者 盛立文 葛崇琳 曹乾涛 黄琳 赵众安 李龙菲 乔山 张爱国 韦育 金辉 张志辉 刘加庆 白振旭 刘志明 Sheng Liwen;Ge Chonglin;Cao Qiantao;Huang Lin;Zhao Zhongan;Li Longfei;Qiao Shan;Zhang Aiguo;Wei Yu;Jin Hui;Zhang Zhihui;Liu Jiaqing;Bai Zhenxu;Liu Zhiming(Ceyear Technologies Co.,Ltd.,Qingdao 266555,China;School of Electronic Engineering,Xidian University,Xi’an 710071,China;School of Information Science and Engineering,Shandong University,Qingdao 266237,China;Center for Advanced Laser Technology,Hebei University of Technology,Tianjin 300401,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2023年第8期152-158,共7页 Infrared and Laser Engineering
基金 国家重点研发计划项目(2022YFF0705900,2022YFF0707102) 青岛市博士后应用研究项目(20266153,21290111) 电子测试技术重点实验室开放基金项目(ZF332) 山东省博士后创新项目(202103076)。
关键词 无跳模 外腔 可调谐 半导体激光光源 窄线宽 mode-hopping free external-cavity tunable semiconductor laser source narrow linewidth
作者简介 盛立文,男,高级工程师,博士,主要从事窄线宽可调谐激光器方面的研究;通讯作者:黄琳,男,高级工程师,博士,主要从事可调谐激光器方面的研究;通讯作者:刘志明,男,研究员,博士,主要从事光电测量技术及国产化仪器方面的研究。
  • 相关文献

参考文献5

二级参考文献35

共引文献18

同被引文献98

引证文献13

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部