期刊文献+

基于变分模态分解的分频径流预测模型 被引量:4

Runoff prediction model of frequency division based on variational mode decomposition
在线阅读 下载PDF
导出
摘要 准确的径流预测对于流域防洪减灾、农业灌溉、水库调度等具有重要意义。针对径流序列具有较强的非线性和非平稳性特征,提出一种月径流预测混合模型VMD-(CNN-LSTM,ELMAN)。首先运用VMD将径流序列分解为多个模态分量,并计算各个模态分量的样本熵值(SE),将其划分为高频和中低频分量;然后运用CNN-LSTM模型预测高频分量,运用ELMAN模型预测中低频分量;最后将预测结果相加得到最终预测结果。将模型应用于黄河流域中下游段白马寺和黑石关水文站的月径流预测,并与CNN-LSTM、ELMAN、VMD-CNN-LSTM模型的预测结果进行对比与评价。研究结果表明:本文模型预测结果的NSE值均大于0.99,优于其他模型,表明VMD-(CNN-LSTM,ELMAN)模型具有较高的预测精度,可应用于实际研究区的径流预测。 Accurate runoff prediction is of great significance for agricultural irrigation,reservoir scheduling,flood control and disaster mitigation in the basin.Aiming at the strong nonlinearity and non-stationarity of the runoff series,a hybrid model for monthly runoff prediction,VMD-(CNN-LSTM,ELMAN),is proposed.Firstly,VMD is used to decompose the runoff sequence into multiple modal components,and the sample entropy(SE) of each modal component is calculated,according to which the components are divided into high-frequency and medium-low frequency components.Then the CNN-LSTM model is used for the prediction of high-frequency components,the ELMAN model for the medium-low frequency components.Finally the predictions results are summed up.The model is then applied to the monthly runoff prediction of Baimasi Station and Heishiguan Station in the middle and lower reaches of the Yellow River Basin,and the prediction results are evaluated compared with those of CNN-LSTM,ELMAN,VMD-CNN-LSTM models.Research results show that the NSE values of the prediction results of this model are all greater than 0.99,which is superior to other models,indicating that the VMD-(CNN-LSTM,ELMAN) model has high prediction accuracy and can be applied to actual monthly runoff prediction of the basin.
作者 张晓煊 宋松柏 张炳林 ZHANG Xiaoxuan;SONG Songbai;ZHANG Binglin(College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling 712100,China;Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,Ministry of Education,Northwest A&F University,Yangling 712100,China)
出处 《水资源与水工程学报》 CSCD 北大核心 2023年第1期84-90,共7页 Journal of Water Resources and Water Engineering
基金 国家自然科学基金项目(52079110)。
关键词 径流预测 变分模态分解 神经网络 黄河流域 runoff prediction variational mode decomposition(VMD) neural network the Yellow River Basin
作者简介 张晓煊(1999-),女,重庆万州人,硕士研究生,主要从事水文预报方向的研究;通讯作者:宋松柏(1965-),男,陕西永寿人,博士,教授,主要从事流域水文模拟与水文预报等方面的教学与科研工作。
  • 相关文献

参考文献5

二级参考文献68

共引文献97

同被引文献64

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部