期刊文献+

基于混沌时间序列的大型风电场发电功率预测建模与研究 被引量:45

Modeling and Analysis of Prediction of Wind Power Generation in the Large Wind Farm Based on Chaotic Time Series
在线阅读 下载PDF
导出
摘要 通过对风力发电系统的发电功率时间序列进行低维非线性动力学建模,表明该时间序列呈现混沌特性。在此基础上,利用混沌时间序列的相空间理论建立了风力发电功率神经网络预测模型,对风力发电功率的短期预测进行了分析和研究,并得到了较高的精度。本文研究数据均来自大唐赛罕坝百万千瓦级风电场。 The time series of wind power generating capacity are examined by nonlinear dynamical methods, in order to identify chaos characteristic from its random-like waveform. The analysis of modeling with low dimensions nonlinear dynamics indicates that time series of wind power generating capacity have chaos characteristic, and wind power generating capacity can be predicted in short time. Phase space reconstruction method is used for artificial neural network model design. The data from the wind farm located in the Saihanba China are used for this study .
出处 《电工技术学报》 EI CSCD 北大核心 2008年第12期125-129,共5页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(50777003)
关键词 风力发电 混沌属性 功率预测 神经网络 Wind power generation,chaos characteristic,capacity prediction, neural network
作者简介 冬雷 男,1967年生,博士,副教授,主要从事电力电子与电力传动以及新能源方面研究。 王丽婕 女,1984年生,博士研究生,主要从事控制理论与控制工程以及新能源方面的研究。
  • 相关文献

参考文献14

  • 1Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment[J].Power Tech Conference Proceedings 2003 IEEE Bologna, 2003, 2:8.
  • 2Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J] IEEE Transaction on Energy Conversion, 2004, 19(2) 352-361.
  • 3Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]. Power Industry Computer Applications, 2001:63-69.
  • 4Wang P, Billinton R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply[J], IEE Proc. Generation, Trans- mission and Distribution, 2001, 148(4): 355-360.
  • 5Billinton R, Guang Bai. Adequacy evaluation of generation systems including wind energy[C]. IEEE Canadian Conference on Electrical and Computer Engineering, 2002,1: 24-29.
  • 6Bech J, Hansen A D, Janosi L, et al. Wind farm modelling for power quality[J].Industrial Electronics Society, 2001,3(29): 1959-1964.
  • 7Li Shuhui, Wunsch D C, O'Hair E A, et al. Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conversion, 2001, 16(3): 276-282.
  • 8Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models[J].IEEE Transations on Energy Conversion. 1999.14(3): 836-842.
  • 9王庆余.非线性经济时间序列的相空间重构及预测[J].天津职业技术师范学院学报,2003,13(1):23-26. 被引量:5
  • 10Haykin S, Li Xiaobo. Detection of signals in chaos[J]. Proceedings of the IEEE,1995,83(1): 95-122.

二级参考文献21

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2李尧亭,蔡诗东.混沌和李雅谱诺夫特征指数[J].物理,1996,25(5):282-286. 被引量:12
  • 3伍海华 李道叶.股票市场系统动力学分析:以上海股票市场为例 [A]..首届全国管理复杂性研讨会论文集 [C].,.147-150.
  • 4程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2000..
  • 5Alexiadis M, Dokopoulos P, Sahsamanoglou H et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 6Bossanyi E A. Short-term wind prediction using Kalman filters[J]. WindEngineering, 1985, 9(1): 1-8.
  • 7Kamal L, Jafri Y Z. Tume series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[J]. Solar Energy, 1997,61(1): 23-32.
  • 8Kariniotekis G, Stavrakakis G, Nogaret E. Wind power forecasting using advanced neural network models[J]. IEEE Trans Energy Conversion, 1996, 11(4): 762-767.
  • 9楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,2000..
  • 10J P Eckmann,D Ruelle. Ergodic Theory of Chaos and Strange Attractors[J].Rev Mod Phys, 1985 ;57:617~656

共引文献599

同被引文献484

引证文献45

二级引证文献822

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部