期刊文献+

基于人工神经网络的风电功率短期预测系统 被引量:123

Artificial Neural Network Based Wind Power Short Term Prediction System
在线阅读 下载PDF
导出
摘要 风电场输出功率预测对接入大量风电的电力系统运行有重要意义。该文综述国内外风电功率预测技术的研究现状、基本原理及预测方法;设计风电功率预测系统的框架,建立基于人工神经网络的风电功率预测系统,该系统即将应用于吉林电网调度中心。该系统以数值天气预报为基础,具有良好的人机界面,实现了与能量管理系统(energy management system,EMS)的无缝连接。对测试数据的预测结果表明,该预测系统能够可靠工作,预测结果的均方根误差在15%左右。最后,该文对风电功率预测系统的经济效益进行估算。 Wind power prediction is important to the operation of power system with comparatively large amount of wind power. A summarization of the research status, basic principle and forecast methods of wind power prediction was presented in the paper. The system framework was designed. A wind power prediction system based on artificial neural network was established, and the system will soon be applied in the Jilin power grid dispatch center. The system relies on numerical weather ~prediction, has friendly man-machine interface, and realizes seamless connection to the energy management system (EMS). The results of the test data indicate that the prediction system is reliable and the root of mean square error (RMSE) is about 15%. The economic benefit of the forecasting system was also estimated.
出处 《电网技术》 EI CSCD 北大核心 2008年第22期72-76,共5页 Power System Technology
关键词 风电 电网 预测 人工神经网络 数值天气预报 wind power power grid prediction artificialneural network numerical weather prediction
作者简介 范高锋(1977-),男,博士研究生,研究方向为电力系统分析及风电功率预测; 王伟胜(1968-),男,博士,教授级高级工程师,博士生导师,主要从事电力系统分析与风力发电领域的科研与教学工作,E—mail:wangws@epri.ac.cn. 刘纯(1968-),男,高级工程师,研究方向为电力系统分析及风力发电。
  • 相关文献

参考文献20

  • 1World Wind Energy Association. Wind turbines generate more than 1% of the global electricity[EB/OL]. (2008-02-21)[2008- 03-20]. http: //www.wwindea.org.
  • 2Landberg L, Watson S J. Short-term prediction of local wind conditions[J]. Bounddary-Layer Meteorology, 1994, 70(1): 171-195.
  • 3Landberg L. Prediktor: an on-line prediction system[C]. Wind Power for the 21 st Century, EUWEC Special Topic Conference, Kassel, 2000.
  • 4Nielsen T S. Madsen H. WPPT: a tool for wind power prediction[C]. EWEA Special Topic Conference, Kassel, 2000.
  • 5Giebel G, Landberg L, Joensen Alfred K, et al. The zephyr-project: the next generation prediction systemiC]. Procedings of Wind Power for the 21st Century, Kassel, Germany, 2000.
  • 6Lange M, Focken U, Heinemann D. Previento-regional wind power prediction with risk control[C]. Proceedings of the World Wind Energy Conference, Berlin, 2002.
  • 7Lange B, Rohrig K, Ernst B, et al. Wind power prediction in Germany: recent advances and future challenges[C]. European Wind Energy Conference, Athens; 2006.
  • 8Zack J W. Brower M C, Bailey B H. Validating of the forewind model in wind forecasting application[C]. EUWEC Special Topic Conference Wind Power for the 21st Century, Kassel Germany, 2000.
  • 9Sanchez I, Usaola O R J, Velasco C, et al. Sipreolico: a wind power prediction system based on flexible combination of dynamic models, application to the Spanish power system[C]. First lEA Joint Action Symposium on Wind Forecasting Techniques, Norrkoping, Sweden, 2002.
  • 10Hatziargyriou N, Contaxis G, Matos M, et al. More care: advice for secure operation of isolated power systems with increased renewable energy penetration and storage[C]. European Wind Energy Conference, Copenhagen, 2001.

二级参考文献68

共引文献792

同被引文献1188

引证文献123

二级引证文献2110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部