期刊文献+

一种自适应鲸鱼快速优化算法 被引量:9

An adaptive fast whale optimization algorithm
在线阅读 下载PDF
导出
摘要 针对标准鲸鱼优化算法存在的局部搜索能力不足、收敛速度慢等问题,提出了一种自适应鲸鱼快速优化算法AWOA。该算法根据个体的集散程度自适应选择全局搜索或局部搜索,在两者之间实现了动态平衡。针对偏离样本平均位置程度较高的个体引入Levy Flight进行二次优化,进一步扩大搜索区域,保证了算法的全局搜索能力。采用标准测试函数证实了AOWA具有较高的收敛速度及稳定性。将AWOA应用于无人车路径规划问题,仿真结果表明其具有稳定的局部搜索能力和全局搜索能力。 An adaptive fast whale optimization algorithm(AWOA)is proposed to solve the problems of insufficient local search ability and slow convergence rate of the standard whale optimization algorithm.The algorithm adaptively selects global search or local search according to the degree of individual distribution and achieves a dynamic balance between them.Levy Flight is introduced for the secondary optimization of individuals with a high degree of deviation from the average position of the sample to further expand the search area and ensure the global search ability of the algorithm.Standard test functions are used to prove that AOWA has high convergence rate and stability.AWOA is applied to unmanned vehicle’s path planning.The simulation results show that it has the stable local exploitation capability and global exploration capability.
作者 杨炳媛 袁杰 郭园园 YANG Bing-yuan;YUAN Jie;GUO Yuan-yuan(School of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第1期145-153,共9页 Computer Engineering & Science
基金 国家自然科学基金(61863033,62073227,62263031) 新疆维吾尔自治区天山青年计划-优秀青年人才培养项目(2019Q018)。
关键词 鲸鱼优化算法 局部搜索 收敛速度 自适应 Levy Flight 路径规划 whale optimization algorithm local exploitation adaptive Levy Flight path planning
作者简介 杨炳媛(1995),女,新疆阿勒泰人,硕士生,研究方向为群智能算法。E-mail:574668446@qq.com;通信作者:袁杰(1975),男,重庆人,博士,副教授,研究方向为计算机应用。E-mail:yuanjie222@126.com;郭园园(1996),男,河南平舆人,硕士生,研究方向为机器人路径规划。E-mail:1097396076@qq.com。
  • 相关文献

参考文献6

二级参考文献126

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 3Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 4Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 5Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 6De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 7Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 8Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.
  • 9Fujimura K, Samet H. A hierarchical strategy for path planning among moving obstacles[J]. IEEE Trans on Robotic Automation, 1989, 5(1): 61-69.
  • 10Conn R A, Kam M. Robot motion planning on N- dimensional star worlds among moving obstacles[J]. IEEE Trans on Robotic Automation, 1998, 14(2): 320-325.

共引文献511

同被引文献93

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部