期刊文献+

基于路径优化D^*Lite算法的移动机器人路径规划 被引量:25

Path planning of moving robot based on path optimization of D^*Lite algorithm
原文传递
导出
摘要 采用D^*Lite算法规划出的路径并不平滑,且预规路径与障碍物均十分接近.除此之外,在动态环境下时,由D^*Lite算法重规划得到的路径也离障碍物距离很近,十分容易发生碰撞.针对此问题,引入懒惰视线算法与距离变换相结合的方法改进D^*Lite算法.首先,对地图进行距离变换,并引入距离值的启发式代价,使得距离障碍物较远的节点优先被选择.然后,在扩展节点时引入视线算法,增加本地父亲节点和远程父亲节点的概念,使得路径不局限于八邻域扩展,从而进化为任意角度路径规划算法;最后,在遇到未知障碍物时进行局部距离变换,结合启发距离值信息进行重规划,使得重规划得到的路径远离突现的障碍物.仿真实验表明,在不同环境下规划所得到的路径均十分平滑与安全. The path planned by the D^*Lite algorithm is not smooth,and the preplanned path is very close to the known obstaclse.Besides,the replanned path is very close to unknown dynamic obstacles,so that the collision can happen very easily.To deal with the problem,the thoughts of the Lazy Theta~*algorithm and distance transform are combined with the D^*Lite algorithm.Firstly,the map is processed by the distance transform algorithm to get the heuristic distance value,which makes the nodes that are far away from the obstacles preferred to be selected.Then,a line of sight algorithm is used while expanding nodes.The concepts of local parents and remote parents are added so that the path is more than eight neighbours.Finally,when unknown obstacles are discovered,the local distance transform algorithm is used to speed up the replan process and makes the replanned path safer.The experimental results show that the paths planned in different environments are all smooth and safe.
作者 黄鲁 周非同 HUANG Lu;ZHOU Fei-tong(Department of Electronic Science and Technology,University of Science and Technology of China,Hefei 230027,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第4期877-884,共8页 Control and Decision
基金 国家自然科学基金项目(51475462).
关键词 D^*Lite 路径规划 移动机器人 路径优化 视线算法 距离变换 D^*Lite path planning robot path optimitization line of sight algorithm distance transform
作者简介 通讯作者:黄鲁(1961-),男,副教授,从事电路与系统、机器人系统等研究,E-mail:luhuang@ustc.edu.cn;周非同(1994-),男,硕士,从事机器人软件设计、路径规划算法的研究,E-mail:feitong@mail.ustc.edu.cn.
  • 相关文献

参考文献5

二级参考文献114

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:215
  • 2张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:121
  • 3戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献489

同被引文献236

引证文献25

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部