期刊文献+

Adaptive SRM neuron based on NbO_(x) memristive device for neuromorphic computing 被引量:2

原文传递
导出
摘要 The spike-response model(SRM)describes the adaptive behaviors of a biological neuron in response to repeated or prolonged stimulation,so that SRM neurons can avoid information overload and support neural networks for competitive learning.In this work,an artificial SRM neuron with the leaky integrate-and-fire(LIF)functions and the adaptive threshold is firstly implemented by the volatile memris-tive device of Pt/NbO_(x)/TiN.By modulating the volatile speed of the device,the threshold of the SRM neuron is adjusted to achieve the adaptive behaviors,such as the refractory period and the lateral inhi-bition.To demonstrate the function of the SRM neuron,a spiking neu-ral network(SNN)is constructed with the SRM neurons and trained by the unsupervised learning rule,which successfully classifies letters with noises,while a similar SNN with LIF neurons fails.This work demonstrates that the SRM neuron not only emulates the adaptive behaviors of a biological neuron,but also enriches the functionality and unleashes the computational power of SNNs.
出处 《Chip》 2022年第2期43-49,共7页 芯片(英文)
基金 This work is supported by the National Key Research and Develop-ment Program of China(Grant no.2018YFE0203802).
作者简介 Xin Guo,E-mail:xguo@hust.edu.cn。
  • 相关文献

参考文献1

共引文献13

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部