摘要
社区结构作为复杂网络的一个重要属性,对于了解复杂网络的组织架构和功能具有深远意义。为了解决复杂网络的社区发现问题,提出了一种融合动态距离和随机竞争学习的社区发现算法(Dynamic Distance Stochastic Competitive Learning,DDSCL)。该算法首先结合节点度值和节点间的欧氏距离来确定随机竞争学习中粒子的初始位置,使得不同粒子在游走初期不会在同一社区内进行竞争,加快了粒子的收敛速度;然后结合动态距离算法,将节点间的动态距离融入粒子优先游走过程中,使得粒子的优先游走过程更具方向性,减小了随机性,并且粒子游走的过程也会优化动态距离的变化;当粒子达到收敛状态时,节点将被对其具有最大控制力的粒子占据。最后网络中每一个粒子对应一个社区,根据各粒子占据的节点来揭示网络的社区结构。在8个真实的网络数据集上,以NMI和模块度Q值为评价指标,将DDSCL算法与现有的代表性算法进行实验比较,发现DDSCL算法整体上优于其他算法,其不仅降低了随机竞争学习中粒子优先游走的随机性,而且解决了动态距离算法中出现的碎片化社区问题,提高了社区发现结果的准确性。实验结果表明,所提算法具有有效性和可行性。
Community structure is an important property of complex networks.It is profoundly significant for understanding the organizational structure and functions of complex networks.A community detection algorithm(Dynamic Distance Stochastic Competitive Learning,DDSCL)is proposed to solve the community detection problem of complex networks.DDSCL is based on dynamic distance and stochastic competitive learning.The algorithm first combines node degree values and Euclidean distances between nodes to determine the initial positions of particles in stochastic competitive learning,which will allow different particles to not compete within the same community at the beginning of the wander,speeding up the convergence of the particles.The dyna-mic distance between nodes is then combined with a dynamic distance algorithm to incorporate the dynamic distance between nodes into the particle prioritization walking process.The particle prioritization process is more directional and less random in this way.The particle travel process will also optimize the change in dynamic distance.When the particles reach a convergence state,the node is occupied by the particle that has the most control over it.Each particle in the network eventually corresponds to a community,and the community structure of the network is revealed according to the nodes occupied by each particle.DDSCL is compared in experimental tests on eight real network datasets,and it uses NMI and modularity Q-value as evaluation metrics.It’s found that DDSCL outperforms other algorithms overall.The algorithm first reduces the randomness of preferential walking of particles in stochastic competitive learning.Then DDSCL solves the problem of fragmented communities arising from dynamic distance algorithms,and improves the accuracy of community detection results.The experimental results show the proposed algorithm’s effectiveness.
作者
王本钰
顾益军
彭舒凡
郑棣文
WANG Ben-yu;GU Yi-jun;PENG Shu-fan;ZHENG Di-wen(School of Information and Network Security,People’s Public Security University of China,Beijing 100032,China)
出处
《计算机科学》
CSCD
北大核心
2022年第5期170-178,共9页
Computer Science
基金
公安部科技强警基础工作专项项目(2020GABJC02)
中国人民公安大学基本科研业务费项目(2021JKF420)。
关键词
复杂网络
社区发现
动态距离
随机竞争学习
粒子竞争
Complex network
Community detection
Dynamic distance
Stochastic competitive learning
Particle competition
作者简介
王本钰,born in 1998,postgra-duate.His main research interests include complex network and deep lear-ning,201621430015@stu.ppsuc.edu.cn;通讯作者:顾益军,born in 1968,Ph.D,professor,Ph.D supervisor.His main research interests include complex network and deep learning,guyijun@ppsuc.edu.cn。