期刊文献+

基于CIELMD与RCMFE的往复压缩机轴承间隙故障特征提取方法 被引量:2

Fault Feature Extraction Method for Bearing Clearance of Reciprocating Compressor Based on CIELMD and RCMFE
在线阅读 下载PDF
导出
摘要 针对往复压缩机轴承间隙故障诊断振动信号强非平稳、非线性与特征耦合特性,提出基于复合插值包络局部均值分解(CIELMD)与精细复合多尺度模糊熵(RCMFE)特征提取方法。使用CIELMD方法分解不同轴承间隙故障信号,利用相关系数筛选包含主要故障信息的PF分量;通过RCMFE方法定量描述PF分量构成状态特征矩阵,为解决信息冗余问题,进一步使用文化基因算法优选矩阵中平均样本距离最大的元素,构成可分性良好的特征向量。往复压缩机轴承间隙故障模拟信号试验结果表明:该方法提取故障特征可分性强,故障识别准确率高。 According to the strong nonstationarity,nonlinearity,and multi⁃component coupling characteristics of reciprocating compressor vibration signal,a feature extraction method based on compound interpolation local mean decomposition method(CIELMD)and refined composite multi⁃scale fuzzy entropy(RCMFE)was proposed.The CIELMD method was used to decompose the fault signals of different bearing clearances,and the highlighted PF components which contained the main information of fault state were chosen with the correlation coefficient.The PF components were quantitatively described by the RCMFE method to form the state characteristic matrix.Furthermore,to solve the problem of information redundancy,the memetic algorithm was further used to optimize the elements with the largest average sample distance in the matrix to form a feature vector with striking separability.Finally,the exper⁃imental results of the reciprocating compressor bearing clearance fault signal shows that the method has strong separability in extracting fault features and high fault identification accuracy.
作者 陈桂娟 江群 李玉倩 赵海洋 王金东 CHEN Guijuan;JIANG Qun;LI Yuqian;ZHAO Haiyang;WANG Jindong(School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing Heilongjiang 163318,China;Daqing Petrochemical Company Water and Gas Plant Sewage Joint Workshop,Daqing Heilongjiang 163714,China)
出处 《机床与液压》 北大核心 2021年第15期180-187,共8页 Machine Tool & Hydraulics
基金 东北石油大学青年科学基金资助项目(2018ANC-31)。
关键词 复合插值包络局部均值分解 精细复合多尺度模糊熵 特征提取 故障诊断 轴承间隙 Compound interpolation local mean decomposition Refined composite multi⁃scale fuzzy entropy Feature extraction Fault diagnosis Bearing clearance
作者简介 陈桂娟(1981-),女,副教授,硕士生导师,主要研究方向为机械设备故障诊断。E-mail:cgj2004@126.com;通信作者:赵海洋(1979-),男,副教授,硕士生导师,主要研究方向为机械设备故障诊断。E-mail:zhaohaiyang2003@126.com。
  • 相关文献

参考文献9

二级参考文献82

  • 1胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48
  • 2程军圣,于德介,邓乾旺,杨宇,张邦基.时间-小波能量谱在滚动轴承故障诊断中的应用[J].振动与冲击,2004,23(2):34-36. 被引量:31
  • 3于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332-335. 被引量:47
  • 4李岳,陶利民,温熙森.用于滚动轴承故障检测与分类的支持向量机方法[J].中国机械工程,2005,16(6):498-501. 被引量:10
  • 5Norden E H, Zheng S, Steven R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]//London A : Proc Royal Society, 1998: 903-995.
  • 6Better algorithms for analyzing nonlinear, nonstationary data[EB/OL]. http://tco, gsfc. nasa. gov, 2005-07-10.
  • 7Loh CH, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses[J]. Bulletin of the Seismological Society of America, 2001, 91: 1339- 1357.
  • 8Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismic data: theory and applications [J]. Journal of Geophysical Research-Solid Earth, 2000,105 : 7845-7856.
  • 9Echeverria, J C, Crowe J A, Woolfson M S, et al. Application of empirical mode decomposition to heart rate variability analysis[J]. Medical & Biological Engineering & Computing, 2001,39 : 471-479.
  • 10Smith J S. The local mean decomposition and its application to EEG perception data[J]. J R Soc Interface,2005,2(5): 443-454.

共引文献263

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部