期刊文献+

局部均值分解方法中乘积函数判据问题研究 被引量:9

Product function criterion in local mean decomposition method
在线阅读 下载PDF
导出
摘要 针对局部均值分解方法(Local mean decomposition,LMD)的乘积函数(Product function,PF)判据问题,根据乘积函数具有正交性的特点,将正交性判据(Orthogonality criterion,OC)引入了LMD方法。即将每次迭代后的OC值与预先确定的阈值进行比较,以此来确定乘积函数迭代过程的终止点。通过对仿真信号和实际信号的分析,验证了采用正交性判据确定的乘积函数满足正交性要求,反映了信号内含的物理信息,从而实现了对信号正确的分解。 To determine the product function(PF) criterion in local mean decomposition(LMD) method,the orthogonality criterion(OC) was introduced into LMD method on the basis of the orthogonality of PFs.The iteration's end point of PFs was defined by comparing the value of OC in each iteration with a fixed threshold.By analyzing the simulated and actual signals,it is validated that the PFs defined by the orthogonality criterion satisfy the orthogonality condition and reflect the internal physic information of the analyzed signals.Thus,the signal's correct decomposition can be achieved.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第9期84-88,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50775068) 国家863计划项目(2009AA04Z414) 教育部长江学者与创新团队发展计划(531105050037) 湖南大学汽车车身先进设计制造国家重点实验室自主课题(60870005)资助项目
关键词 局部均值分解 乘积函数 判据 正交性 local mean decomposition product function criterion orthogonality
作者简介 张亢 男,博士生,1983年生
  • 相关文献

参考文献10

  • 1Smith J S. The local mean decomposition and its application to EEG perception data [ J ]. Journal of the Royal Society Interface, 2005, 2 (5) : 443 - 454.
  • 2Boashash B. Estimating and interpreting the instantaneous frequency of a signal-part 1 : Fundamentals[ J]. Proc. IEEE, 1992, 80(4): 520-538.
  • 3程军圣,杨宇,于德介.局部均值分解方法及其在齿轮故障诊断中的应用[J].振动工程学报,2009,22(1):76-84. 被引量:95
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis[ J]. Proc. R. Soc. Loml. A. 1998, 454 : 903 - 995.
  • 5Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [ J 1- Advances in Adaptive Data Analysis, 2009, 1( 1 ) : 1 -41.
  • 6Li L, Ji H B. Signal feature extraction based on an improved EMD method[J]. Measurement, 2009, 42 : 796 - 803.
  • 7Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [ C ]. Proceedings of IEEE EURASIP Workshop on Nonlinear Signal and hnage Processing. Grado, Italy, 2003.
  • 8Xie Q W, Xuan B, Li J P, et al. EMD algorithm based on bandwidth and the application on one economic data analysis [ C ]. European Signal Processing Conference, Poznan, Poland, 2007 : 2419 - 2423.
  • 9张亢,程军圣,杨宇.基于自适应波形匹配延拓的局部均值分解端点效应处理方法[J].中国机械工程,2010,21(4):457-462. 被引量:38
  • 10邱绵浩,刘箐,丛华.基于B样条插值曲线直接筛选的EMD及其在机械振动信号处理中的应用[J].装甲兵工程学院学报,2007,21(3):29-33. 被引量:5

二级参考文献27

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17 (4): 787-804.
  • 3Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform. Mechanical Systems and Signal Processing[J]. 2002, 16(2-3): 447-457.
  • 4Cohen L. Time-frequency distribution-a review [J]. Proceedings of the IEEE, 1989, 77(7): 941-981.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in diserete-time Wigner distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(5): 1 067-1 072.
  • 6Lee Joon-Hyun, Kim J, Kim Han-Jun. Development of enhanced Wigner-Ville distribution function [J]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367-398.
  • 7Mallat S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans. P. A. M. I., 1989, 11(7):674-689.
  • 8Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998, 454: 903-995.
  • 9Huang N E, Shen Z, Long SR. A new view of nonlinear water waves: the Hitbert spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31: 417-457.
  • 10Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilber t spectrum method to identify near-fault ground-motion characteristics and structural response[J]. Bulletin of the Seismological Society of American, 2001, 91 (5): 1 339-1 357.

共引文献129

同被引文献91

引证文献9

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部