期刊文献+

时间窗约束下的共享停车泊位动态分配模型 被引量:7

Dynamic Allocation Model of Shared Parking Berth Under the Constraint of Time Window
在线阅读 下载PDF
导出
摘要 为了描述用户动态需求下的共享停车泊位分配方案,考虑用户预约时段的关联性及共享时段的时间窗约束,借鉴相似性算法中的重叠度及接近度,建立了预约时间及共享时段的匹配度算法,同时明确共享停车泊位的分配原则及优化原则,构建了时间窗约束下的共享停车泊位动态分配模型.根据算例结果,构建的分配模型能够根据用户的需求进行实时的动态优化,相比于根据用户申请时间的先后求解得到的分配方案,共享停车泊位动态分配模型可以将停车泊位的利用率由原先的69.4%提高至87.4%.结果表明,模型得到的分配方案在满足用户动态需求的同时,能够最大程度地利用共享停车泊位. In order to describe the allocation scheme of shared parking spaces under the dynamic demand of users,considering the relevance of users’reservation periods and the time window constraint of shared periods,and drawing lessons from the overlap and proximity of similarity algorithms,a matching algorithm of reservation time and shared periods was established.Meanwhile,the allocation principles and optimization principles of shared parking spaces were defined,and a dynamic allocation model of shared parking spaces under the time window constraint was constructed.According to the results of an example,the allocation model can be dynamically optimized in real time according to the needs of users.Compared with the allocation scheme based on the application time of users,the dynamic allocation model of shared parking spaces can improve the utilization rate of parking spaces from 69.4%to 87.4%.The results show that the allocation scheme obtained by the model can not only meet the dynamic needs of users,but also maximize the use of shared parking spaces,which provides a new solution for solving the parking problem.
作者 王韩麒 WANG Hanqi(Ningbo Ninggong Traffic Engineering Design and Consulting Co.Ltd.,Ningbo 315211,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2021年第2期253-258,共6页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 交通工程 动态分配模型 共享停车泊位 时间窗约束 匹配度算法 traffic engineering dynamic allocation model shared parking berth time window constraint matching degree algorithm
作者简介 王韩麒(1992-),男,硕士,主要研究领域为交通行为分析。
  • 相关文献

参考文献5

二级参考文献36

  • 1Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[M]. Berlin, Heidelberg: Springer, 1993: 69-84.
  • 2Sathe S, Jeung H, Aberer K. Creating probabilistic databases from imprecise time-series data[C]//Proceedings of the 27th International Conference on Data Engineering, Hannover, Germany, 2011. Piscataway, NJ, USA: IEEE, 2011: 327-338.
  • 3Bemecker T, Emrich T, Kriegel H, et al. A novel probabilistic pruning approach to speed up similarity queries in uncertain databases[C]//Proceedings of the 27111 International Confer- ence on Data Engineering, Harmover, Germany, 2011. Pis- cataway, NJ, USA: IEEE, 2011: 339-350.
  • 4Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//LNCS 730: Proceedings of the 4th International Conference on Foundations of Data Orga- nization and Algorithms, Chicago, USA, Oct 13-15, 1993. Berlin, Heidelberg: Springer, 1993: 69-84.
  • 5Yeh M Y, Wu K L, Yu P S, et al. PROUD: a probabilistic approach to processing similarity queries over uncertain data streams[C]//Proceedings of the 12th International Con- ference on Extending Database Technology, Saint Petersburg, Russia, Mar 24-26, 2009. New York, NY, USA: ACM, 2009: 684-695.
  • 6Sarangi S R, Murthy K. DUST: a generalized notion of simi- larity between uncertain time series[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, Washington, USA, Jul 25-28, 2010. New York, NY, USA: ACM, 2010: 383-392.
  • 7Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subse- quence matching in time series databases[C]//Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, USA, 1994. New York, NY, USA: ACM, 1994: 419-429.
  • 8Beckmann N, Kriegel H P, Schneider R, et al. The R*-tree: an efficient and robust access method for points and rectan- gles[C]//Proceedings of the 1990 ACM SIGMOD Interna- tional Conference on Management of Data. New York, NY, USA: ACM, 1990: 322-331.
  • 9Keogh E, Chakrabarti K, Mehrotra S, et al. Locally adaptive dimensionality reduction for indexing large time series data- bases[C]//Proceedings of the 2001 ACM SIGMOD Interna- tional Conference on Management of Data, Santa Barbara, USA, 2001. New York, NY, USA: ACM, 2001: 151-162.
  • 10Rafiei D, Mendelzon A. Efficient retrieval of similar time sequences using DFT[C]//Proceedings of the 5th Interna- tional Conference on Foundations of Data Organizations and Algorithms, Kobe, Japan, 1998. Berlin, Heidelberg: Springer, 1998: 249-257.

共引文献80

同被引文献76

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部