期刊文献+

居住区共享停车泊位分配模型 被引量:37

Distributing Model For Shared Parking in the Residential Zones
在线阅读 下载PDF
导出
摘要 为了提高停车泊位利用率,减少停车后步行距离,根据商业区和居住区停车需求时段的错峰特征,建立共享停车泊位利用率最大化和步行距离最小化的双目标泊位分配模型.模型考虑了停车泊位供需空间和时间冲突特征,界定了模型的边界约束条件,采用粒子群多目标搜索算法求解.以聊城市金鼎商圈为例,调研了商业区和居住区的停车泊位数量、高峰时段停车需求和平均步行距离等模型参数.通过算法仿真,实验结果验证了模型的可行性.研究结果表明,建立的停车共享分配模型可用于居住区共享停车泊位分配,有效地提高了泊位利用率,降低了停车后的平均步行距离. In order to improve the occupancy of parking spaces,reduce the walking distance after parking,a double target model which takes the occupancy and walking distance into account is proposed.According to the peak characteristics of commercial zones and the residential zones,this model considers the temporal and spatial conflicting characteristics,defines the boundary constraint model.Then the particle swarm algorithm is used to solve this model.Base on the data collected from the Jin Ding CBD in Liaocheng,China,the parking space amount,peak hours’park demands and walking distance,et al,the feasibility of this model is verified.The results show that the allocating model is practical to distribute the parking spaces,the parking occupancy is effectively increased and the walking distance after parking is shorter.
作者 张文会 苏永民 戴静 王连震 ZHANG Wen-hui;SU Yong-min;DAI Jing;WANG Lian-zhen(School of Traffic,Northeast Forestry University,Harbin 150040,China;Guangzhou Transports Research Institute,Guangzhou 510635,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第1期89-96,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 中央高校基本科研业务费专项资金(2572018BG01) 教育部人文社会科学研究基金(17YJCZH250) 国家自然科学基金(青年)(71701041)~~
关键词 交通工程 共享停车 泊位分配 粒子群多目标搜索算法 traffic engineering shared parking parking allocation multi-objective search algorithm for particle swarm optimization
作者简介 通信作者:张文会(1978-),男,黑龙江哈尔滨人,副教授,博士.rayear@163.com
  • 相关文献

参考文献3

二级参考文献36

  • 1程志强,戴连奎,孙优贤.区间参数不确定系统优化的可行性分析[J].自动化学报,2004,30(3):455-459. 被引量:8
  • 2刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 3Parsopoulos K E,Vrahatis M N. Particle swarm optimization method in multiobjective problem [C] // Proceedings of 2002 ACM Symposium on Applied Computing. Madrid, 2002:603 - 607.
  • 4Coello C C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2004, 8 ( 3 ) : 256 - 279.
  • 5Mostaghin S, Teich J. Strategies for finding local guides in multi-objective particle swarm optimization (MOPSO) [ C ]// Proceedings of the IEEE Swarm Intelligence Symposium. Veracruz, 2003:26 33.
  • 6Hu X, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization [ C ]// Proceedings of the IEEE Congress on Evolutionary Computation. Washington D C, 2002.1677 - 1681.
  • 7Pulido G T, Coello C C A. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer[C]//Proceedings of the Genetic and Evolutionary (;omputation Conference. Berlin, 2004 : 225 - 237.
  • 8Li X D. A nondominated sorting particle swarm optimizer for muhiobjective optimization [C]// Proceedings of the Genetic and Evolutionary Computation Conference. Berlin: Springer- Verlag, 2003 : 37 - 48.
  • 9Leong W F, Yen G G. Dynamic swarms in PSO-based multiobjective optimization [ C ] //IEEE Congress on Evolutionary Computation. Berlin, 2007 : 3172 - 3179.
  • 10Leong W F, Yen G G. Dynamic population size in PSO- based multiobjective optimization [ C]//IEEE Congress on Evolulionary Computation. Berlin, 2006 : 16 - 21.

共引文献32

同被引文献190

引证文献37

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部