摘要
                
                    针对兴趣点推荐系统存在的隐式反馈建模用户-POI交互准确率不高和忽视用户签到数据的隐性反馈属性的问题。提出了一种新颖的兴趣点推荐算法。具体而言,采用一种基于神经网络的排序算法来捕获用户-兴趣点的交互关系,结合泊松分解算法和贝叶斯个性化排序技术建模用户的签到行为,将上述2个步骤得到的算法整合到统一的推荐算法架构中,从而提供兴趣点推荐服务。实验结果表明,提出的算法推荐性能优于传统主流先进兴趣点推荐算法。
                
                The implicit feedback modeling user-Point-of-Interest(POI)interaction accuracy of the POI recommendation system is not high and the implicit feedback attribute of the use’s check-in data is ignored.A novel POI recommendation algorithm is proposed.Specifically,first of all,a neural network-based ranking algorithm is used to capture the interaction relationship of user-POI.Then,the Poisson factorization algorithm and Bayesian personalized ranking technology are combined to model the user’s check-in behavior.The algorithms obtained in the above two steps are integrated into a unified recommendation algorithm architecture to provide a POI recommendation service.The experimental results show that the proposed algorithm is better than the traditional state-of-the-art POI recommendation algorithm.
    
    
                作者
                    张松慧
                    熊汉江
                ZHANG Songhui;XIONG Hanjiang(School of Computer,Wuhan Vocational College of Software and Engineering,Wuhan 430205,China;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China)
     
    
    
                出处
                
                    《计算机工程与应用》
                        
                                CSCD
                                北大核心
                        
                    
                        2020年第21期176-186,共11页
                    
                
                    Computer Engineering and Applications
     
            
                基金
                    教育部职业院校信息化教学指导委员会课题(No.2018LXB0286)。
            
    
                关键词
                    兴趣点推荐
                    泊松分解
                    神经网络
                    贝叶斯个性化排序
                
                        Point-of-Interest(POI)recommendation
                        Poisson factorization
                        neural network
                        Bayesian personalized ranking
                
     
    
    
                作者简介
张松慧(1980—),女,硕士,副教授,CCF会员,研究领域为人工智能、数据挖掘,E-mail:86919931@qq.com;熊汉江(1974—),男,博士,教授,研究领域为测绘遥感、计算机应用技术。