摘要
针对现有兴趣点推荐的初始化和忽视评论信息语义上下文信息的问题,将深度学习融入推荐系统中已经成为兴趣点推荐研究的热点之一。该文提出一种基于深度学习的混合兴趣点推荐模型(MFM-HNN)。该模型基于神经网络融合评论信息与用户签到信息来提高兴趣点推荐的性能。具体地,利用卷积神经网络学习评论信息的特征表示,利用降噪自动编码对用户签到信息进行初始化。进而,基于扩展的矩阵分解模型融合评论信息特征和用户签到信息的初始值进行兴趣点推荐。在真实签到数据集上进行实验,结果表明所提MFM-HNN模型相比其他先进的兴趣点推荐具有更好的推荐性能。
When modeling user preferences,the current researches of group recommendation ignore the problem of modeling initialization and the review information accompanied with rating information for recommender models,integrating deep learning into the recommendation system becomes a hotspot of Point-Of-Interest(POI)recommendation.In this paper,a new POI recommendation model called Matrix Factorization Model integrated with Hybrid Neural Networks(MFM-HNN)is proposed.The model improves the performance of POI recommendation by fusing review text and check-in information based on Neural Network(NN).Specifically,the convolutional neural network is used to learn the feature representation of the review text and the check-in information is initialized by using the stacked denoising autoencoder.Furthermore,the extended matrix factorization model is exploited to fuse the review information feature and the initial value of the checkin information for POI recommendation.As is shown in the experimental results on real datasets,the proposed MFM-HNN achieves better recommendation performances than the other state-of-the-art POI recommendation algorithms.
作者
冯浩
黄坤
李晶
高榕
刘东华
宋成芳
FENG Hao;HUANG Kun;LI Jing;GAO Rong;LIU Donghua;SONG Chengfang(China Ship Development and Design Center,Wuhan 430064,China;Computer School,Wuhan University,Wuhan 430072,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2019年第4期880-887,共8页
Journal of Electronics & Information Technology
基金
国家自然科学基金(41201404)
中央高校基本科研业务费专项资金(2042015gf0009)~~
关键词
推荐算法
兴趣点
矩阵分解
神经网络
深度学习
Recommendation algorithm
Point-Of-Interest(POI)
Matrix factorization
Neural Network(NN)
Deep learning
作者简介
通信作者:李晶leejingcn@163.com,李晶:男,1967年生,博士,教授,研究方向为数据挖掘和多媒体技术;冯浩:男,1979年生,博士,高级工程师,研究方向为体系结构和系统工程;黄坤:男,1979年生,博士,高级工程师,研究方向为人工智能和系统工程;高榕:男,1981年生,博士,研究方向为数据挖掘和智能推荐;刘东华:女,1989年生,博士生,研究方向为数据挖掘和智能推荐;宋成芳:男,1978年生,博士,讲师,研究方向为可视化分析和位置服务.