期刊文献+

SPCF:一种基于内存的传播式协同过滤推荐算法 被引量:49

SPCF: A Memory Based Collaborative Filtering Algorithm via Propagation
在线阅读 下载PDF
导出
摘要 基于内存的协同过滤是当前互联网推荐引擎中的核心技术.然而,目前该技术的发展面临着严重的用户评分稀疏性问题.该文通过采用传播的思想对数据稀疏性问题进行了有益的探索和研究,并提出了一种改进的基于内存的协同过滤推荐算法SPCF.该算法通过相似度传播,寻找到更多、更可靠的邻居,然后在此基础上,从用户和项目两方面信息考虑对用户进行推荐.在Movie Lens和Yahoo Music数据集上的实验结果表明,SPCF在MAE指标上比传统的基于内存的协同过滤推荐算法有明显的提高. Memory based Collaborative Filtering (CF) plays an important role in current Internet recommendation engines. However, this technology suffers from serious data sparsity of user-item rating matrix. This paper proposes a kind of improved model called SPCF, which is based on the state-of-the-art methods. The key property of the proposed model is that it finds more reliable users through similarity propagation and recommends items from both user and item information. Our experimental results on the two datasets-- Movie Lens and Yahoo Music show that the proposed model achieves at least 3% lift in MAE relative to traditional collaborative filtering algorithms.
出处 《计算机学报》 EI CSCD 北大核心 2013年第3期671-676,共6页 Chinese Journal of Computers
关键词 推荐系统 相似度传播 基于内存的协同过滤 recommend system similarity propagation memory-based collaborative filtering
作者简介 赵琴琴,女,1985年生,硕士,主要研究方向为信息检索和协同过滤.E-mail:zqq{y100637@163.com. 鲁凯,男,1988年生,硕士,主要研究方向为信息检索. 王斌,男,1972年生,博士,副研究员,主要研究方向为信息检索和自然语言处理.
  • 相关文献

参考文献3

二级参考文献22

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献612

同被引文献467

引证文献49

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部