期刊文献+

基于改进人工鱼群算法和MAKLINK图的机器人路径规划 被引量:14

Robot path planning based on improved artificial fish swarm algorithm and MAKLINK graph
原文传递
导出
摘要 针对静态二维环境下移动机器人全局路径规划问题,提出一种基于改进人工鱼群算法(IAFSA)和MAKLINK图的路径规划方法.该方法以Lorentzian函数和正态分布函数为视野和步长的自适应算子,引入指数递减惯性权重因子,能够提高AFSA算法的收敛速度和计算精度. MS (JoséLuis Esteves Dos Santos)算法结合IAFSA算法分步寻优,取IAFSA算法优化后的最优路径为全局最优路径,可以解决以往算法在MAKLINK图中只能求近似全局最优路径的问题.仿真实验结果表明了所提出改进算法方案的可行性和有效性. A global path planning method, based on the improved artificial fish swarm algorithm(IAFSA) and MAKLINK graph,is proposed to solve the global path planning problem in the two-dimensional static environment.Lorentzian function and normal distribution function are chosen as adaptive operators of step and visual, the exponential decreasing inertia weighting factor is also introduced, which can improve the convergence speed and accuracy of the AFSA algorithm.The MS algorithm is combined with the IAFSA algorithm to calculate for two steps. The optimal path optimized by the IAFSA algorithm is selected as the global optimal path, which solves the problem of that the previous algorithm can only get the approximate global optimal path in the MAKLINK graph. The simulation results show the feasibility and effectiveness of the proposed improved algorithm.
作者 郭伟 秦国选 王磊 孙日杰 GUO Wei;QIN Guo-xuan;WANG Lei;SUN Ri-jie(College of Mechanical Engineering,Tianjin University,Tianjin 300354,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第9期2145-2152,共8页 Control and Decision
基金 国家社科重点基金项目(16AZD004)。
关键词 移动机器人 路径规划 人工鱼群算法 MAKLINK图 MS算法 mobile robot path planning artificial fish swarm algorithm MAKLINK graph MS algorithm
作者简介 通讯作者:郭伟(1965),男,教授,博士,从事现代设计理论方法与技术、人工智能、大数据等研究,E-mail:wguo@tju.edu.cn;秦国选(1994),男,硕士生,从事移动机器人的路径规划与导航的研究,E-mail:qin1021@tju.edu.cn;王磊(1976),男,副教授,从事现代设计理论方法与技术、人工智能等研究,E-mail:w2165@139.com;孙日杰(1992),男,硕士生,从事移动机器人视觉跟随的研究,E-mail:srjie@tju.edu.cn.
  • 相关文献

参考文献4

二级参考文献95

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 3Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 4Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 5Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 6Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 7De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 8Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 9Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.
  • 10Fujimura K, Samet H. A hierarchical strategy for path planning among moving obstacles[J]. IEEE Trans on Robotic Automation, 1989, 5(1): 61-69.

共引文献595

同被引文献129

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部