期刊文献+

FeCoCrCuNi高熵合金裂纹及孔洞结构的力学与微观构象演化的分子动力学模拟研究 被引量:4

Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations
在线阅读 下载PDF
导出
摘要 本文采用分子动力学模拟研究了FeCoCrCuNi高熵合金裂纹和孔洞结构在不同轴向拉伸速率下的力学与微观结构演化机理.结果表明:应变速率越高FeCoCrCuNi裂纹结构对应更高的过冲应变和过冲应力,其主要原因是高拉伸速率会导致高强度的BCC结构及孪晶结构的生成,而BCC结构及孪晶结构的产生进而会抑制应力的下降,通过应力-应变曲线,可知FeCoCrCuNi裂纹模型在轴向应力作用下表现为塑性形变.对于不同尺寸的孔洞FeCoCrCuNi裂纹模型的应力结构分析,可以得出:孔洞尺寸越大,FeCoCrCuNi裂纹结构对应的过冲应变和过冲应力越小,其主要原因是大尺寸的孔洞造成孔洞之间产生裂纹的,进而会影响这个材料的屈服应变和屈服强度. Molecular dynamics(MD)simulations have used to study the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void.The MD simulation results show that higher uniaxial stretched rate corresponds to higher overshoot stress and strain.This is due to the generation of BCC and twin crystal structure in FeCoCrCuNi model with high stretched rate.And the BCC and twin crystal structures will slow down the decrease of the stress.Thus,FeCoCrCuNi is plastic deformation under uniaxial stretched deformation.For voided-FeCoCrCuNi high-entropy alloy,the MD results shown that the values of the overshoot stress and strain decrease with increasing of the size of void.This is due to the generation of the crack between the voids for FeCoCrCuNi high-entropy alloy.
作者 董斌 王雪梅 朱子亮 DONG Bin;WANG Xue-Mei;ZHU Zi-Liang(Weifang University of Science and Technology,Weifang 262700,China)
机构地区 潍坊科技学院
出处 《原子与分子物理学报》 CAS 北大核心 2020年第4期591-595,共5页 Journal of Atomic and Molecular Physics
基金 潍坊科技学院博士启动金(2017BS06)。
关键词 FeCoCrCuNi高熵合金 裂纹 孔洞 轴向拉伸 FeCoCrCuNi high-entropy alloy Crack Void Uniaxial stretch
作者简介 董斌,男,山东潍坊人,硕士研究生,主要从事金属材料研究.E-mail:db50257155@163.com;通讯作者:朱子亮.E-mail:zhuzl19790925@163.com。
  • 相关文献

参考文献7

二级参考文献38

  • 1刘源,李言祥,陈祥,陈敏.多主元高熵合金研究进展[J].材料导报,2006,20(4):4-6. 被引量:84
  • 2曹利霞,王崇愚.Phonon spectrum and related thermodynamic properties of microcrack in bcc-Fe[J].Chinese Physics B,2006,15(9):2092-2101. 被引量:3
  • 3曹莉霞,王崇愚.α-Fe裂纹的分子动力学研究[J].物理学报,2007,56(1):413-422. 被引量:21
  • 4Yeh J W, Chen S K , Lin S J. Advanced Engineering Materials[J], 2004, 6(5): 299.
  • 5Cantor B, Chang I T H, Knight Pet al. Material Science & Engineering A[J], 2004(375-377): 213.
  • 6Chen M R, Lin S J, Yeh J Wet al. Materials Transactions[J], 2006, 47(5): 1395.
  • 7Huang P K, Yeh J W, Shun T T. Advanced Engineering Materials[J], 2004, 6(1-2): 74.
  • 8Wang X F, Zhang Y, Qiao Yet al. lntermetallics [J], 2007, 15 (3): 357.
  • 9Seizo Nagasaki, Makato Hirabayashi, Translated by Liu Ansheng (刘安生). Binary Alloy Phase-Diagrams(二元合金相图)[M]. Beijing: Metallurgical Industry Press, 2004:28.
  • 10De Bore F R, Boom R, Mattens W C M et al. Cohesion in Metals. Transition Metal Alloys[M]. [S.l.]: North-Holland Physics Publishing, 1988:133.

共引文献100

同被引文献7

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部