期刊文献+

基于动静态表征的众筹协同预测方法 被引量:3

Cooperative Prediction Method Based on Dynamic and Static Representation for Crowdfunding
在线阅读 下载PDF
导出
摘要 众筹是一个新兴的互联网金融平台,项目的发起者可以通过使用互联网,征求大量平台用户的资金来资助他们的项目.但是由于众筹平台所具有的独特规则,只有在特定时间内收集了足够的资金,项目的筹资才会成功进行交易.为了防止项目发起者和投资者在可能失败的项目上浪费时间和精力,动态追踪众筹项目的筹资过程以及估算其融资成功概率便极为重要.然而,现有的一些工作既没有针对动态预测跟踪机制的研究,也没有考虑平台上的项目发起者和投资者之间的动态行为交互.为了解决这些问题,基于长短期记忆网络设计了一种新颖的动静态协同预测模型.该模型着重分析了用户行为,包括评论的情绪倾向以及融资过程中的动态增量信息,从而将融资项目与投资人之间的交互行为进行深度挖掘分析.首先,针对平台上的静态特征和动态用户行为数据,通过不同的Embedding方法得到他们的深度表征.在此基础上,进一步设计了基于注意力机制的协同预测模型,以便了解项目融资的时序信息对最终结果的影响程度.最后,在真实的众筹数据集上进行的大量实验结果表明,所提出的动静态表征预测方法相比其他预测方法更为有效. Crowdfunding is an emerging finance platform for creators to fund their efforts by soliciting relatively small contributions from a large number of individuals using the Internet.Due to the unique rules,a campaign succeeds in trading only when it collects adequate funds in a given time.To prevent creators and backers from wasting time and efforts on failing campaigns,dynamically estimating the success probability of a campaign is very important.However,existing crowdfunding systems neither have the mechanism of dynamic predictive tracking,nor consider the dynamic interaction between project sponsors and investors on the platform.To address these issues,a novel dynamic and static collaborative prediction model is designed based on long and short-term memory network.This model focuses on user behavior,including the emotional tendency of reviews and the dynamic incremental information in the financing process,so as to deeply mine and analyze the interaction between financing projects and investors.Firstly,for the static features and dynamic user behavior data on the platform,their deep characterization is obtained by different embedding methods.On this basis,a collaborative prediction model based on attention mechanism is further designed to understand the impact of timing information of project financing on the final results.Finally,experiments on real crowdfunding datasets show that the proposed dynamic and static representation prediction method is more effective than other prediction methods.
作者 张凯 赵洪科 刘淇 潘镇 陈恩红 ZHANG Kai;ZHAO Hong-Ke;LIU Qi;PAN Zhen;CHEN En-Hong(Anhui Province Key Laboratory of Big Data Analysis and Application(University of Science and Technology of China),Hefei 230027,China;College of Management and Economics,Tianjin University,Tianjin 300072,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第4期967-980,共14页 Journal of Software
基金 国家自然科学基金(61672483,71790594,U1605251) 中国科学院青年创新促进会优秀会员专项(2014299)。
关键词 动态追踪 用户行为分析 深度语义表征 注意力机制 长短期记忆网络 dynamic tracking user behavior analysis deep semantic representation attention mechanism LSTM network
作者简介 张凯(1993-),男,安徽亳州人,博士生,CCF学生会员,主要研究领域为数据挖掘,自然语言处理,个性化推荐;赵洪科(1989-),男,博士,讲师,CCF专业会员,主要研究领域为数据挖掘,商务分析,互联网金融;通讯作者:刘淇(1986-),男,博士,副教授,博士生导师,CCF专业会员,主要研究领域为数据挖掘,社交网络,个性化推荐,E-mail:qiliuql@ustc.edu.cn;潘镇(1988-),男,博士生,主要研究领域为数据挖掘,社交网络;陈恩红(1968-),男,博士,博士生导师,CCF会士,主要研究领域为数据挖掘,社交网络,推荐系统.
  • 相关文献

参考文献2

二级参考文献20

  • 1薛薇,陈欢歌编著.基于Clementine的数据挖掘[M].北京:中国人民大学出版社,2012.
  • 2CulnanM J, McHugh P J, Zubillaga J I. How large U.S. CompaniesCan Use Twitter and Other Social Media to Gain Business Value[J].MIS Quarterly Executive, 2010, 9 (4).
  • 3LeitnerP, Grechenig T. Next Generation Shopping: Case Study Re-search on Future E-Commerce Models[C].IADIS International Confer-encee-Commerce, 2007.
  • 4OrdaniniA,Miceli L, Pizzetti M, et al, Crowd-Funding: TransformingCustomers Into Investors Through Innovative Service Platforms[J].Journal of Service Management, 2011, 22(4).
  • 5MollickE. The Dynamics of Crowdfunding: An Exploratory Study[J].Journal of Business Venturing, 2014,29(1).
  • 6MitraT, Gilbert E. The Language That Gets People To Give: PhrasesThat Predict Success on Kickstarter[C].Proceedings of The 17th ACMConference on Computer Supported Cooperative Work & Social Com-puting. ACM, 2014.
  • 7GreenbergM D, Pardo B, Hariharan K. Crowdfunding Support Tools:Predicting Success & Failure[C]. ACM CHF13 Extended Abstracts onHuman Factors in Computing Systems, 2013.
  • 8刘文华,阮值华.众包:让消费者参与创新[J].企业管理,2009(7):93-95. 被引量:16
  • 9肖玲诺,史建锋,孙玉忠.基于BP神经网络的产学研知识创新联盟风险评价研究[J].中国软科学,2011(12):173-179. 被引量:28
  • 10张利斌,钟复平,涂慧.众包问题研究综述[J].科技进步与对策,2012,29(6):154-160. 被引量:88

共引文献35

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部