期刊文献+

基于用户属性—关系相似度的好友推荐模型研究 被引量:5

Research on Friend Recommendation Model Based on User Attribute-Relation Similarity
在线阅读 下载PDF
导出
摘要 [目的/意义]挖掘潜在好友关系并进行精准的好友推荐服务,已成为社交网络领域研究的热点,基于用户属性-关系相似度的好友推荐模型研究旨在增强用户忠诚度以及在线社区活跃度,提升社区的信息服务准确性和效率。[方法/过程]通过融合用户链接关系与属性特征,提出用户属性-关系相似评价体系;采用因子分析法,计算得出各项目权重以及综合得分;据此构建社交网络相似度矩阵,基于派系划分方法,对用户进行划分分区,最终实现好友推荐服务。[结果/结论]实验结果表明,运用派系划分的基于用户属性-关系推荐模型在推荐列表长度受限情况下的整体表现较优,有效提高推荐精准度。 [Purpose/significance]The specialists in the field of social networking have turned the spotlight on the issue of mining potential friends’relation to provide accurate friend recommendation service.The research on friend recommendation model based on user attribute-relation similarity is tend to enhance user loyalty and online community vibrancy and,in the meantime,the accuracy and efficiency of community information services.[Method/process]By combining user connections and characteristics,this paper firstly proposes the evaluation system of user relationship-attribute similarity.With factor analysis method,the weight of each item as well as the comprehensive score can be obtained.Then,the network matrix is established by calculating similarity between users.According to the method of cliques division,the subjects are divided into fractions.And eventually,friend recommendation service is completed.[Result/conclusion]Through the empirical analysis,it concludes that the relationship-attribute recommendation,with implement of cliques division,does better,especially,in the condition where the length of recommendation lists is limited,and efficiently enhances precision.
出处 《情报理论与实践》 CSSCI 北大核心 2020年第2期137-142,163,共7页 Information Studies:Theory & Application
基金 2017年广东省哲学社会科学基金项目“基于Altmetrics的学术成果多维信息计量体系、评价模型及实证研究”(项目编号:GD17CTS01) 2018年国家社会科学基金项目“基于用户行为动机的ALTMETRICS评价模型构建与实证研究”(项目编号:18BTQ075)的系列成果
关键词 好友推荐 用户属性 关系相似度 派系划分 社交网络 因子分析 friend recommendation users’characteristics relationship similarity cliques division social network factor analysis
作者简介 余以胜,男,1975年生,博士,副教授,硕士生导师。研究方向:电子商务与信息经济。;陈咏晖,女,1997年生,硕士生。研究方向:电子商务,消费者行为研究。
  • 相关文献

参考文献6

二级参考文献63

  • 1Yang Shuanghong, Long Bo, Smola A,et al. Like like alike: Joint friendship and interest propagation in social networks[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011.
  • 2Naruchitparames J, Gunes M H, Louis S J. Friend recommendations in social networks using genetic algorithms and network topology[C]//Evolutionary Computation (CEC), 2011 IEEE Congress on. New Orleans: IEEE,2011.
  • 3Chechev M, Georgiev P. A multi-view content-based user recommendation scheme for following users in Twitter[C]//4th International Conference, SocInfo 2012. Berlin: Springer Berlin Heidelberg, 2012.
  • 4Weng Jianshu, Lim E P, Jiang Jing, et al. Twitterrank: Finding topic-Sensitive influential Twitterers[C]//Proceedings of the third ACM international conference on Web search and data mining. New York: ACM,2010.
  • 5Chen Jilin, Nairn R, Nelson L, et al. Short and tweet: Experiments on recommending content from information streams[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2010.
  • 6Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. Virginia: AUAI Press Arlington,2004.
  • 7Hannon J, McCarthy K, Smyth B. Content vs. tags for friend recommendation[M]//Research and Development in Intelligent Systems XXIX. Springer London, 2012: 289-302.
  • 8Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the fourth ACM conference on Recommender systems. New York: ACM,2011.
  • 9Xie Xing. Potential friend recommendation in online social network[C]//Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical and Social Computing (CPSCom). New York :IEEE, 2010.
  • 10Triadic closure [EB/OL].[2013-10-17].http://en.wikipedia.org/wiki/Triadic_closure.

共引文献59

同被引文献66

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部