期刊文献+

微博中用户标签的研究 被引量:34

Study on User Tags in Weibo
在线阅读 下载PDF
导出
摘要 微博环境中用户可以为自己添加标签,用户所添加的标签往往被视为是对自身特点和兴趣的重要描述信息.标签中所包含的信息可能有助于建立精确的用户描述,因此在个性化推荐、专家检索、影响力分析等应用中有潜在的应用价值.首先,在大规模数据上分析和研究了微博中用户添加标签的行为及标签内容分布的特点;之后,通过主题模型对用户的微博内容进行分析,实验结果表明:用户的标签越相似,微博内容也越相似,反之亦然;随后,分析了用户关注关系与微博和标签内容之间的联系,实验结果显示,有关注关系的用户之间微博和标签的内容越相似;基于这个发现,分别使用标签内容和微博内容对真实微博数据中的用户关注关系进行预测,结果表明:基于标签的预测方法其效果明显优于基于微博内容的预测方法,显示出用户标签在描述用户兴趣方面的价值. Weibo allows users to add text tags in their profiles, which are descriptive to one's personality and interests. The tag information can be very useful to user profiling in applications such as personalized recommendation, expert finding and social influence measuring. This paper first studies the characteristics of users' tagging behavior and content of the tags based on large-scale data. By adopting topic model on users' Weibo posts, it finds that the more tags two users have in common, the more similar their Weibo posts are and vice versa. It also finds that the users with connections to each other have more similar tags and Weibo posts. Based on this observation, this study uses tags and Weibo posts to predict user connections separately on real-world data. The experimental results show that the tag-based approach is significantly better than the approach based on Weibo posts, thus validating the effectiveness of user tags in describing user interests.
出处 《软件学报》 EI CSCD 北大核心 2015年第7期1626-1637,共12页 Journal of Software
基金 国家高技术研究发展计划(863)(2011AA01A205) 国家自然科学基金(60903107 61073071)
关键词 微博 用户标签 主题模型 关注关系预测 Weibo user tag topic model connection prediction
作者简介 邢千里(1987-),男,陕西岐山人,博士生,主要研究领域为信息检索.E-mail:xingqianli@gmail.com 刘列(1991-),男,硕士生,主要研究领域为信息检索. 刘奕群(1981-),男,博士,副教授,CCF高级会员,主要研究领域为信息检索. 张敏(1977-),女,博士,副教授,CCF高级会员,主要研究领域为机器学习,信息检索. 马少平(1961-),男,博士,教授,博士生导师.主要研究领域为知识工程,信息检索,汉字识别与后处理,中文古籍数字化.
  • 相关文献

参考文献14

  • 1Pal A, Counts S. Identifying topical authorities in microblogs. In: Proc. of the 4th ACM Int'l Conf. on Web Search And Data Mining (WSDM). New York, 2011. 45-54. [doi: 10.1145/1935826.1935843].
  • 2Cha M, Haddadi H, Benevenuto F, Gummadi KP. Measuring user influence in twitter: The million follower fallacy. In: Proc. of the Int’l AAAI Conf. on Weblogs & Social Media. Washington, 2010. 10-17.
  • 3Ghosh S, Sharma N, Benevenuto F,Ganguly N, Gummadi KP. Cognos: Crowdsourcing search for topic experts in microblogs. In: Proc. of the 35th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR). New York, 2012. 575-590. [doi: 10.1145/2348283,2348361].
  • 4Weng JS, Lim EP, Jiang J, He Q. TwitterRank: Finding topic-sensitive influential Twitterers. In: Proc. of the 3rd ACM Int’l Conf. on Web Search and Data Mining (WSDM).New York, 2010. 261-270. [doi: 10.1145/1718487.1718520].
  • 5Si XC. Content-Based recommendation and analysis of social tags [Ph.D. Thesis]. Beijing: Tsinghua University, 2010 (in Chinese with English abstract).
  • 6Sina Weibo. http://www.weibo.com.
  • 7Chen Y, Lin L, Sun CJ, Liu BQ. A tag recommendation method for microblog users. Intellegent Computer and Applications, 2011,1(3):21 -26 (in Chinese with English abstract).
  • 8Liang C, Liu ZY, Sun MS. Expert finding for microblog misinformation identification. In: Proc. of the 24th ACL Int’l Conf. on Computational Linguistics. Mumbai, 2012. 703—712.
  • 9Simon HA. On a class of skew distribution functions. Biometrika, 1995,42(3/4):425-440. [doi: 10.1093/biomet/42.3-4.425].
  • 10Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. The Journal of Machine Learning Research, 2003,3:993-1022.

同被引文献262

引证文献34

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部