期刊文献+

基于BLSTM与方面注意力模块的情感分类方法 被引量:17

Sentiment Classification Method Based on BLSTM and Aspect Attention Module
在线阅读 下载PDF
导出
摘要 基于方面的情感分析已广泛应用于文本信息挖掘,但在句子情感极性模糊或包含多个不同方面情感极性时难以准确提取特征信息,削弱了情感极性分类效果。为解决该问题,提出一种结合双向长短记忆网络和方面注意力模块的情感分类方法。利用多个方面注意力模块同时对不同方面进行独立训练,使每个方面信息与注意力操作互不影响,各自进行注意力参数的学习与调整,以充分提取特定方面的隐藏信息,从而更准确地识别不同方面的情感极性。在SemEval数据集上的实验结果表明,该方法相对现有的基准情感分析方法,可有效提升分类精确率、查全率与F1值,优化情感分类效果。 Aspect-Based Sentiment Analysis(ABSA)has been widely used in text information mining,but can hardly extract accurate feature information when the sentiment polarity of a sentence is fuzzy or a sentence has sentiment polarities of multiple aspects,which undermines performance of sentiment polarity classification.To address the problem,this paper proposes a sentiment classification method that combines the bidirectional long short-term memory and aspect attention module.The method uses multiple aspect attention modules to independently train different aspects at the same time,making information and attention operations of each aspect processed without affecting the other.Attention parameters of each aspect are independently learnt and modified,so hidden information of a specific aspect can be fully extracted for more effective recognition of sentiment polarities of different aspects.Experimental results on the SemEval dataset show that compared with the existing baseline sentiment analysis method,the proposed method can enhance sentiment classification performance,with the classification accuracy rate,recall rate and F1 value significantly improved.
作者 彭祝亮 刘博文 范程岸 王杰 肖明 廖泽恩 PENG Zhuliang;LIU Bowen;FAN Cheng’an;WANG Jie;XIAO Ming;LIAO Zeen(Guangdong Key Laboratory of IoT Information Technology,School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Guangdong Modern Audio-Visual Information Engineering Technology Research Center,Guangzhou University,Guangzhou 510006,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第3期60-65,72,共7页 Computer Engineering
基金 国家自然科学基金(61673124,61673126,61773128)。
关键词 深度学习 基于方面的情感分析 循环神经网络 自然语言处理 注意力机制 deep learning Aspect-Based Sentiment Analysis(ABSA) Recurrent Neural Network(RNN) natural language processing attention mechanism
作者简介 彭祝亮(1995-),女,硕士研究生,主研方向为自然语言处理,E-mail:pengzl1995@yeah.net;刘博文,硕士研究生;范程岸,硕士研究生;王杰,教授、博士;肖明,教授、博士;廖泽恩,硕士研究生。
  • 相关文献

参考文献4

二级参考文献50

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献838

同被引文献119

引证文献17

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部