期刊文献+

基于多神经网络混合的短文本分类模型 被引量:5

Short Text Classification Model Based on Multi-Neural Network Hybrid
在线阅读 下载PDF
导出
摘要 文本分类指的是在制定文本的类别体系下,让计算机学会通过某种分类算法将待分类的内容完成分类的过程.与文本分类有关的算法已经被应用到了网页分类、数字图书馆、新闻推荐等领域.本文针对短文本分类任务的特点,提出了基于多神经网络混合的短文本分类模型(Hybrid Short Text Classical Model Base on Multi-neural Networks).通过对短文本内容的关键词提取进行重构文本特征,并作为多神经网络模型的输入进行类别向量的融合,从而兼顾了FastText模型和TextCNN模型的特点.实验结果表明,相对于目前流行的文本分类算法而言,多神经网络混合的短本文分类模型在精确率、召回率和F1分数等多项指标上展现出了更加优越的算法性能. Text classification refers to the process of letting a computer learn to complete the classification of content by some classification algorithm under the classification system of text.Algorithms related to text classification have been applied to web classification,digital libraries,news recommendation,and other fields.Based on the characteristics of short text classification tasks,this study proposes a hybrid short text classical model based on multi-neural networks.By reconstructing the text features of the keywords extracted from the short text content,and using the vector fusion as the input of the multi-neural network model,the characteristics of the FastText model and the TextCNN model are taken into account.The experimental results show that compared with the current popular text classification algorithms,the multineural network hybrid short text classification model shows more superior algorithm performance on multiple indicators such as accuracy,recall,and F1 score.
作者 侯雪亮 李新 陈远平 HOU Xue-Liang;LI Xin;CHEN Yuan-Ping(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《计算机系统应用》 2020年第10期9-19,共11页 Computer Systems & Applications
基金 中国科学院信息化建设专项(XXH13504-01)
关键词 深度学习 短文本分类 关键词提取 特征重构 神经网络 FastText TextCNN deep learning short text classification keyword extraction feature reconstruction neural network FastText TextCNN
作者简介 通讯作者:李新,E-mail:lixin@cnic.cn
  • 相关文献

参考文献6

二级参考文献34

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2石志伟,刘涛,吴功宜.一种快速高效的文本分类方法[J].计算机工程与应用,2005,41(29):180-183. 被引量:15
  • 3索红光,刘玉树,曹淑英.一种基于词汇链的关键词抽取方法[J].中文信息学报,2006,20(6):25-30. 被引量:88
  • 4[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 5[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297
  • 6[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136
  • 7[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998
  • 8[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998
  • 9[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953
  • 10[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31

共引文献210

同被引文献43

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部