期刊文献+

基于用户画像的旅游情境化推荐服务研究 被引量:83

Research on the Tourism Situational Recommendation Service Based on Persona
在线阅读 下载PDF
导出
摘要 [目的/意义]用户画像是通过深度挖掘用户人口统计学信息、消费行为、社会关系、情境信息而抽象出来的标签化画像,为揭示用户行为特征并进行个性化推荐提供了依据。[方法/过程]基于用户基本属性数据、用户行为属性数据以及用户情境属性数据抽象出了游客标签并进行了形式化表示,结合本体建模方法建立了游客的用户画像概念模型,在此基础上提出了基于用户画像的旅游情境化推荐模型并设计了一个景点推荐测试系统进行实验测试。[结果/结论]测试结果表明,基于用户画像的情境化推荐方法较好地融合了用户基本信息标签、行为信息标签与情境信息标签,获得了更优的推荐效果,验证了文章推荐方法的可行性。 [Purpose/significance] Persona is a tagged portrait that is abstracted by deep mining of users' demographic information,consumption behavior,social relations and situational information. It provides a basis for revealing user behavior characteristics and personalized recommendation. [Method/process]Based on the users' basic data,user behavior data and user contextual data,the paper generalizes tourist persona tags,and proposes a persona conceptual model based on ontology modeling method.Then,a tourist situational recommendation model based on persona is proposed and a scenic spots recommendation test system is designed for experiment. [Result/conclusion]The test results show that the situational recommendation method based on persona well integrates users' basic information tags,behavior information tags and situational information tags,and achieves better recommendation effect,which verifies the feasibility of the proposed method.
出处 《情报理论与实践》 CSSCI 北大核心 2018年第10期87-92,共6页 Information Studies:Theory & Application
基金 国家自然科学基金项目"云环境用户多兴趣图谱的移动商务关联性推荐模型及算法研究"(项目编号:71271186) 教育部人文社会科学基金项目"大数据异构OSNs情境特征挖掘的社会化信任推荐方法及其应用研究"(项目编号:17YJCZH109) 河北省自然科学基金项目"融合情境特征的大数据异构OSNs信任推荐模型及算法研究"(项目编号:G2017203319) 河北省自然"大数据异构在线社交网络复杂信息传播建模及算法研究"(项目编号:G2016203220)的成果之一
关键词 用户画像 旅游 情境分析 推荐服务 persona tourism situational analysis recommendation service
作者简介 刘海鸥,男,1981年生,博士,副教授,硕士生导师。研究方向:个性化推荐。;孙晶晶,女,1993年生,硕士生。研究方向:数据挖掘。;苏妍螈,女,1991年生,博士生。研究方向:挖掘网络消费者行为。;张亚明(通讯作者),男,1962年生,博士,教授,博士生导师。研究方向:数据挖掘。
  • 相关文献

参考文献6

二级参考文献71

  • 1王洪伟,蒋馥,吴家春.简单本体的形式化模型及包含性检验[J].系统工程理论方法应用,2004,13(3):193-198. 被引量:2
  • 2Tveit A. Peer-to-peer based recommendations for mobile commerce[C ]//Proceedings of the 1st International Workshop on MobileCommerce. New York, ACM Press’ 2001 :26 -29.
  • 3Kim C Y, Lee J K, Cho Y H, et al. Viscors: A visual content rec-ommender for the mobile Web [ J ]. IEEE Intelligent Systems,2004, 19(1) : 32 -39.
  • 4Park M H. Location -based recommendation system using Bayesianuser,s preference model in mobile devices [ C]//Ubiquitous In-telligence and Computing -6th International Conference. Berlin :Springer-Verlag,2007 :1130 - 1139.
  • 5Kuo M, Chen L, Liang C. Building and evaluating a location -based service recommendation system with a preference adjustmentmechanism[ J]. Expert System with Applications, 2009,36(5):3543 -3554.
  • 6Kwon O B, Choi S C, Park G R. Nama : A context -aware multi -a-gent based Web service approach to proactive need identification forpersonalized reminder systems [ J]. Expert Systems with Applica-tions, 2005’ 29(1) : 17 -32.
  • 7Si H, Kawahara Y,Morikawa H, et al. Stochastic approach forcreating context -aware services based on context histories in smarthome [ C ]//Proceedings of Exploiting Context Histories in SmartEnvironment. Berlin: Springer-Verlag, 2005 :3480 -3495.
  • 8Doulkeridis C, Loutas N, Vazirgiannis M. System architecture forcontext -aware service discovery [J]. Electronic Notes in Theoreti-cal Computer Science, 2006,146(1) : 101 -116.
  • 9Lee W P. Deploying personalized mobile services in an agent -basedenvironment [ J ]. Expert Systems with Applications,2007,32(4) : 1194-1207.
  • 10Santos A C, Cardoso J M P, Ferreira D R, et al. Providing usercontext for mobile and social networking applications [ J]. Pervasiveand Mobile Computing, 2010,6(2) : 324 -341.

共引文献154

同被引文献868

引证文献83

二级引证文献878

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部