期刊文献+

基于感兴趣区梯度方向直方图的行人检测 被引量:27

Pedestrian Detection Based on HOG of ROI
在线阅读 下载PDF
导出
摘要 针对以梯度方向直方图作为人体特征的行人检测存在向量维数较大、检测时间较长的问题,提出基于感兴趣区梯度方向直方图的行人检测方法,分别在头部及四肢等重点区域计算梯度方向直方图,有效地减少了向量维数。实验结果表明,该方法在检测率基本不变的情况下提高了检测速度。 The drawbacks of pedestrian detection method based on Histograms of Oriented Gradient(HOG) are larger dimensions of features and slow detection speed.Aiming at this point,a method based on HOG of Region Of Interest(ROI) is proposed.HOG is calculated in four important regions which locate in head and limbs’ regions respectively.Through this method,dimensions of features are decreased effectively.Experimental results show this method speeds up detection process while maintaining comparably accuracy to the method based on HOG.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第24期182-184,共3页 Computer Engineering
关键词 行人检测 梯度方向直方图 感兴趣区 支持向量机 pedestrian detection Histograms of Oriented Gradient(HOG) Region Of Interest(ROI) Support Vector Machine(SVM)
作者简介 曾春(1977-),男,硕士研究生,主研方向:模式识别,行人检测; E-mail:lxhw@scu.edu.cn 李晓华,副教授、博士; 周激流,教授、博士生导师
  • 相关文献

参考文献3

  • 1Schauland S, Park S B, Zhang Yan. Vision-based Pedestrian Detection Improvement and Verification of Feature Extraction Methods and SVM-based Classification[C]//Proc. of IEEE Intelligent Transportation Systems Conference. [S. l.]: IEEE Press, 2006: 97-102.
  • 2潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 3Dalai N. Finding People in Images and Videos[D]. Grenoble, France: The French National Institute for Research in Computer Science and Control, 2006.

二级参考文献13

  • 1Xu F, Fujimura K. Human detection using depth and gray images [ A]. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance [ C ] , Miami, Florida, 2003: 115 -121.
  • 2Vapnik V. The Nature of Statistical Learning Theory[ M]. Berlin:Springer-Verlag, 1995.
  • 3University of California, San Diego. Gait data[ EB/OL]. http://pages. cpsc. ucalgary. ca/- boyd/gait/experiment. html, 1996-12-12.
  • 4Gavrila D M. The visual analysis of human movement: A survey [ J ].Computer Vision and Image Understanding, 1999,73 ( 1 ) :82 - 98.
  • 5Nicolaou C A, Egbert A L, Lacher R C, et al. Human shape recognition using the method of moment and artificial neural networks [ A]. In: International Joint Conference on Neural Networks [ C ],Washington, DC, the USA, 1999:3147 -3151.
  • 6Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22( 8 ): 809 - 830.
  • 7Toth D, Aach T. Detection and recognition of moving objects using statistical motion detection and Fourier descriptors [ A ]. In: 12th International Conference on Image Analysis and Processing [ C ],Mantova, Italy, 2003:1 - 6.
  • 8Satoh Y, Tanahashi H, Niwa Y, et al. Robust human detection from complex background by radial reach filter [ A ]. In: Proceeding of IEEE TENCON' 02 [ C ]. Beijing, China, 2002: 533 - 536.
  • 9Ran Y, Zheng Q. Multi moving people detection from binocular sequences[ A ]. In: IEEE International Conference on Acoustics,Speech, and Signal Processing[ C ] , HongKong, 2003:37 - 40.
  • 10Tate S, Takefuji Y. Video-based human shape detection by deformable templates and neural network [ A ]. In: Sixth International Conference on Knowledge-Based Intelligent Information & Engineering Systems[ C]. Crema, Italy, University of Milan, 2002: 280 - 285.

共引文献15

同被引文献269

引证文献27

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部