期刊文献+

一种可用于入侵防范的步态识别方法研究

Gait Recognition Method for Intrusion Prevention
在线阅读 下载PDF
导出
摘要 随着对信息安全的要求越来越高,对变电站巡检检修及相关运维工作过程中区域入侵防范的技术研究就很有必要。提出了一种可用于入侵防范系统中的步态识别方法,该方法以足底压力信息为基础,采用卷积神经网络模型进行步态特征提取。首先用压力测试板采集行人的足底压力信息并作相应的预处理;结合K均值聚类和卷积神经网络方法的自学习特性得到足底压力信息的特征表示;对所获得的特征表示进行分类识别。在典型数据集上的比较试验表明了该算法的有效性。 With the increasing requirement of infcirmation security, it is essential to research the regional intru- sion prevention technology in the proces of substation inspection, maintenance and the related operations. This paper proposes a gait recognition method used in the intrusion prevention system. This method is based on foot pressure information, and extracts the gait feature by means of convolution neural network model. First use stress test board to collect pedestrians" plantar pressure information and make the corresponding pretreatment; obtain the characteristic expression of plantar pressure information in combination with K-means clustering and convolution neural network self-learning characteristics; tures. Comparison experiments on typical data sets show make classification recognition of the obtained fea the effectiveness of this algorithm.
出处 《电力与能源》 2016年第2期211-214,共4页 Power & Energy
关键词 入侵防范 足底压力信息 卷积神经网络 intrusion prevention plantar pressure in^ormation convolution neural network
作者简介 杨春生(1985),男,硕士,工程师,从事带电作业管理工作。
  • 相关文献

参考文献10

  • 1ROSENBAUM D,BECKER H P.Plantar pressure distribution measurements-technical background and clinical applications[J].Foot and Ankle Surgery,1997,3(2):1-14.
  • 2夏懿,马祖长,姚志明,孙怡宁.基于足底压力分布时空HOG特征的步态识别方法[J].模式识别与人工智能,2013,26(6):529-536. 被引量:11
  • 3梁栋,高玮玮,张艳,鲍文霞.基于足底压力图像的静态触觉步态识别[J].华中科技大学学报(自然科学版),2013,41(10):25-29. 被引量:17
  • 4LIANG Dong,GAO Wei-wei,ZHANG Yan,et al.Tactility-based gait recognition by plantar pressure image[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2013,12(6):11-15.
  • 5孙志军,薛磊,许阳明,王正.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810. 被引量:641
  • 6HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].arXiv preprint arXiv:2012:1-9.
  • 7HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 8LE Q V,RANZATO M A,MONGA R,et al.Building high-level features using large scale unsupervised learning[J].arXiv preprint arXiv:2011:4-5.
  • 9YAMAKAWA T,TANIGUCHI K,ASARI K,et al.Biometric personal identification based on gait pattern using both feet pressure change[C]//Automation Congress,2008.WAC 2008.World.IEEE,2008:1-6.
  • 10TAKEDA T,TANIGUCHI K,ASARI K,et al.Biometric personal authentication by one step foot pressure distribution change by load distribution sensor[C]//Fuzzy Systems,2009.FUZZ-IEEE 2009.IEEE International Conference on.IEEE,2009:906-910.

二级参考文献65

  • 1史力民,董佳英,李泰山,吴雪冬.赤足残缺足迹检验初探[J].辽宁警专学报,2005,7(2):6-9. 被引量:8
  • 2王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献660

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部