摘要
针对现有电力电子电路故障预测技术的不足,提出了粒子群非齐次灰色(PSO-NGM)预测模型对电力电子电路进行故障预测的方法。所提出的PSO-NGM预测模型能够对故障特征参数的发展趋势进行预测,进而判断设备剩余使用寿命。通过对Buck-Boost电路纹波电压未来趋势进行预测实验,证明该PSO-NGM模型对电路特征参数预测相对误差很小,能够跟踪故障特征性能参数的变化趋势,有效实现电力电子电路故障预测。
Aiming at the issue of fault prediction technique of power electronic circuits’a method based on characteristic parameter data and particle swarm optimization non-homogenous grey model (PSO-NGM)for the prediction of power electronic circuits was proposed.The proposed PSO-NGM model can predict the development trend of fault feature parameters prediction,and judge the reliability life.Based on the buck-boost circuit experiment,the new method can trace the characteristic parameters’trend and can be effectively applied in fault prediction of power electronic circuits.
出处
《电子测量技术》
2015年第10期118-121,共4页
Electronic Measurement Technology
关键词
电力电子电路
故障预测
特征性能参数
粒子群非齐次灰色模型
power electronic circuits
fault prediction
characteristic parameter
particl swarm optimization non-homogenous grey model
作者简介
贾云涛,1986年出生,硕士,所工程师。主要研究方向电学仪器测试、计量科研等。E-mail:billowingwaves@163.com