期刊文献+

电动汽车电机故障时间的粒子群优化灰色预测 被引量:11

Grey Prediction Model of Electric Vehicle Motor Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 电动汽车电机故障因素多,可靠性分析需要大样本数据,为准确预测电机的故障时间,建立了故障率较高元件的故障树模型,给出了其可靠性计算式,并将基于小样本数据的灰色算法引入到电机可靠性计算中,利用传统和改进灰色模型进行仿真分析。为了进一步提高预测精度,以两种灰色模型为基础,利用粒子群算法的全局寻优能力,提出了以均方差最小为目标函数的优化模型,对电机故障时间进行预测,并利用两组实测数据进行了验证。结果表明,优化算法的相对平均误差分别为3.36%和5.05%,相对误差最大值分别为5.62%和8.41%。该结果验证了所提算法的有效性,为电动汽车电机的故障预测提供了理论依据。 Due to various motor faults in electric vehicles, a large amount of data are usually required in reliability analysis. In order to accurately predict the malfunction time, we established a fault tree model of components with high failure rate, and proposed an analytic formula. Grey algorithm based on small sample data was introduced into the reliability calculation of motor, and the traditional model and improved model were simulated and analyzed. To further improve the prediction accuracy, particle swarm optimization (PSO} which has the abilities of seeking the global optimum was utilized to fit the two grey models aiming at least mean squared errors, and to predict the malfunction time. At last, the optimization modelwas validated by two sets of measured data. The analysis results reveal that, the average relative errors of optimization algorithm are 3. 36% and 5. 05%, repectively, and the maximum relative errors are 5. 620/60 and 8.41%, repectively. The results verify the effectiveness of the proposed algorithm, which provides fundamental basis for faults prediction of motors used in electric vehicle.
出处 《高电压技术》 EI CAS CSCD 北大核心 2012年第6期1391-1396,共6页 High Voltage Engineering
基金 国家高技术研究发展计划(863计划)(SS2012AA111003)~~
关键词 电动汽车 电机 灰色模型 粒子群优化(PSO) 故障时间 故障树 electric vehicle motor grey model particle swarm optimization(PSO} down time failure tree
作者简介 朱显辉1975-,男,博士生,讲师从事电磁兼容,电机可靠性等方面研究电话:(0451)86413611-8212E-mail:zhu—xianhui@sina.com 崔淑梅1964-,女,博士,教授,博导从事车辆电子技术。特种电机驱动与控制等方面的研究E—mail:cuism@hit.edu.cn 师楠1982-,女,博士生,讲师从事风力发电、电力系统调频等方面的研究E—mail:shinan12000@163.com
  • 相关文献

参考文献19

二级参考文献119

共引文献414

同被引文献180

引证文献11

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部