期刊文献+

基于多特征的视频中单人行为识别 被引量:3

Single person's behavior recognition based on multi-feature video
在线阅读 下载PDF
导出
摘要 基于视频流的运动人体行为识别是一项既具有挑战性同时又非常具有广阔应用前景的研究课题.行为识别是基于人体目标识别和人体跟踪更高级的计算机视觉部分,研究出一种健壮的行为识别算法具有重要的理论意义和广泛的应用前景。利用在视频的基础上提取出位置分布图、大小分布图等一系列的属性将人的行为进行分类。采用基于帧间差分和改进混合高斯模型的运动人体分割算法,解决了复杂背景下的运动目标检测问题。实验数据对提出的新的行为描述方法进行了各种指标的讨论,验证了本文提出的算法的合理性与高效性。 Moving human behavior recognition based on a video stream is a challenging research topic, which has broad application prospects at the same time. Behavior recognition is a part of more advanced computer vision based on the human target recognition and tracking human body. It has important theoretical significance and broad prospect to develop a robust behavior recognition algorithm. On the basis of the video, using a series of properties to classify the human behavior, location distribution, size distribution, etc. Human Movement based on the frame difference and improved Gaussian mixture model segmentation algorithm to solve the problem of moving target detection under complex background. The experimental data discussed various indicators on the behavior of the proposed new description method, which verifies the rationality and efficiency of the proposed algorithm.
出处 《电子设计工程》 2015年第12期105-108,共4页 Electronic Design Engineering
基金 国家自然科学基金(61471182)
关键词 行为分类 特征提取 行为识别 运动目标检测 behavior classification feature extraction behavior recognition moving object detection
作者简介 胡兴旺(1987-),男,河南。项城人,硕士。研究方向:模式识别,图像处理。
  • 相关文献

参考文献6

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:80
  • 2Ronald Poppe. A survey on vision-based human action recognition Image and Vision Computing [J] Computer Engineering and Design, 2010,28 (6) :976-990.
  • 3Aggarwal J K,Cai Q. Human motion analysis: A review Computer Vision and Image Understanding [J]. Electronic Measurement Technology, 1999,73 (3):428-440.
  • 4Jolly M P D, Lakshmanan S,Jain A K. Vehicle segmentation and classification using deformable templates[J]. IEEE Trans. on PAMI, 1996,18(3):293-308.
  • 5Yilmaz A,Li X,Shah M. Contour-based object tracking with occlusion handling in video acquired using mobile cameras[J]. IEEE Trans. on PAMI,2004,26( 11 ):1531-1536.
  • 6Marc Niethammer,Allen Tannenbaum,Sigurd Angenent. Dynamic active contours for visual tracking[J]. IEEE Trans. on Automatic Control, 2006,51 (4) :562-579.

二级参考文献56

  • 1刘相滨,向坚持,王胜春.人行为识别与理解研究探讨[J].计算机与现代化,2004(12):1-5. 被引量:13
  • 2魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 3Oliver N,Horvitz E.A comparison of HMMs and dynamic Bayesian networks for recognizing office activities[J].Lecture Notes in Artificial Intelligence,2005,3538:199-209.
  • 4Kolonias I,Christmas W,Kittler J.Use of context in automatic annotation of sports videos[J].Lecture Notes in Computer Science,2004,3287:1-12.
  • 5Park S,Aggarwal J K.A hierarchical Bayesian network for event recognition of human actions and interactions[J].Multimedia Systems,2004,10(2):164-179.
  • 6Lafferty J,Mccallum A,Pereira F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[A].In Proc ICML[C].Massachusetts:IEEE press,2001,282-289.
  • 7Sminchisescu C,Kanaujia A,Li Z,Metaxas D.Conditional models for contextual human motion recognition[A].In Proc ICCV[C].Beijing:IEEE Computer Society Press,2005.2:1808-1815.
  • 8Luhr S,Bui H H,Venkatesh S,West G A W.Recognition of Human Activity through Hierarchical Stochastic Learning[A].In Proc.PerCom[C].Texas:IEEE Computer Society Press,2003.416-422.
  • 9Duong T V,Bui H H,Phung D Q,Venkatesh S.Activity recognition and abnormality detection with the switching hidden semi-Markov model[A].In Proc CVPR[C].San Diego:IEEE Computer Society Press,2005.838-845.
  • 10Nguyen N T,Venkatesh S,West G A W.Learning people movement model from multiple cameras for behaviour recognition[J].Lecture Notes in Computer Science,2004,3138:315-324.

共引文献79

同被引文献27

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部