期刊文献+

基于帧间差分和运动估计的Camshift目标跟踪算法 被引量:60

Camshift Object Tracking Algorithm Based on Inter-frame Difference and Motion Prediction
在线阅读 下载PDF
导出
摘要 针对Camshift算法无法适应目标的高速运动、复杂背景和遮挡的局限性,本文提出结合帧间差分法和运动估计对Camshift算法进行改进。首先在颜色概率分布图计算中通过帧间差分法加入目标运动信息,实现自动初始化跟踪并排除与目标相似背景颜色的干扰。之后在搜索窗传递过程中预测目标的位置,根据跟踪状态对搜索窗进行调整,以实现对高速运动目标的跟踪。实验表明新算法在目标高速运动、遮挡、和同色干扰情况下,仍能进行有效跟踪。 To enhance Camshift algorithm on the adaptability of high-speed object,complex background and covering,an improved algorithm combining inter-frame difference and motion prediction is proposed. First,before calculating back-projection image,the color information is associated with the motion information gained from inter-frame difference to eliminate color noise and automatically initialize tracking. Second,in order to make the algorithm applicable with high-speed object,position of target is predicted and searching window is updated according to tracking state. Experimental results prove that the improved algorithm is robust to high-speed target,covering and color noises.
出处 《光电工程》 CAS CSCD 北大核心 2010年第1期55-60,共6页 Opto-Electronic Engineering
关键词 目标跟踪 CAMSHIFT 帧间差分法 运动估计 object tracking Camshift inter-frame difference motion prediction
作者简介 邬大鹏(1985-),男(汉族),江苏徐州人。硕士研究生,南京航空航天大学,主要研究工作是目标跟踪与机器视觉。E—mail:wudapeng0424@163.com。
  • 相关文献

参考文献4

二级参考文献47

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533.

共引文献274

同被引文献461

引证文献60

二级引证文献348

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部