期刊文献+

基于自适应背景图像更新的运动目标检测方法 被引量:54

A Moving Object Detection Method Based on Self-Adaptive Updating of Background
在线阅读 下载PDF
导出
摘要 在运动目标的实时检测中常用的方法是背景图像差分法,但因其缺乏背景图像随监视场景光照变化而及时更新的合理方法,限制了本方法的适应性.对此,本文首先提出了一种基于光流场等技术的自适应背景逼近更新方法,并根据彩色差值模型得到差分图像;然后引入Gauss模型实现运动目标的自适应阈值分割.实验结果表明:本文提出的背景更新方法可随着光照条件的变化实时、准确地更新背景图像,在此基础上提出的基于Gauss模型的自适应阈值分割方法可以实现运动目标的完整分割,这为运动目标的后续识别与理解奠定了基础. For real-time detection of moving object,the general and simple method is based on background image difference. However,it requires the accurate current background image,and so far,no reasonable approach has been designed and implemented for automatic background updating along with the illumination variance, which limits its applications. To overcome the above problem, a new self-adaptive background approximating and updating algorithm based on optical flow theory is first presented in this paper. Moreover, the difference image is obtained by using a color image difference model, and then a self-adaptive thresholding segmentation method for moving object detection based on Gauss model is developed and implemented. Experimental results demonstrate that the proposed new background updating method can update the background exactly and quickly along with the variance of illumination, and the self-adaptive thresholding segmentation method based on Gauss model can extract the moving object regions accurately and completely, which is the foundation for further objects recognition and understanding.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第12期2261-2264,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60374031) 山东省科技攻关课题(No.031080124) 山东省自然科学基金(No.Y2002G18) 北京大学视觉与听觉信息处理实验室基金(No.0306)
关键词 运动目标检测 背景差分 光流场 图像分割 背景更新 moving object detection background difference optical flow image segmentation background updating
作者简介 魏志强男,1969年12月出生于山东省禹城市,博士后,现为中国海洋大学计算机系教授,博士生导师,主要研究方向为计算机图形图像处理、软件工程等.E-mail:weizhiqiang@mail.ouc.edu.cn. 纪筱鹏女,1978年5月出生于山东省莱阳市,现为中国海洋大学计算机系博士,主要研究方向为图像处理与计算机视觉.E-mail:jxiaopeng@mail.OUC.edu.cn.
  • 相关文献

参考文献14

  • 1张泽旭,李金宗,李宁宁.基于光流场分割和Canny边缘提取融合算法的运动目标检测[J].电子学报,2003,31(9):1299-1302. 被引量:56
  • 2屈有山,田维坚,李英才.基于并行隔帧差分光流场与灰度分析综合算法的运动目标检测[J].光子学报,2003,32(2):182-186. 被引量:27
  • 3Sasa G, Loncaric S. Spatio-temporal image segmentation using optical flow and clustering algorithm [ A ]. First Int' 1 Workshop on Image and Signal Processing and Analysis[ C]. Pula,Croatia, 2000.63 - 68.
  • 4Smith S M,Brady J M. ASSET-2: real-time motion segmentation and shape tracking[A]. Proceedings of the IEEE International Conference on Computer Vision [ C ]. NJ, USA: IEEE,1995. 814 - 820.
  • 5Thompson W B,Pong T C. Detecting moving object[J] .Int J Comp Vision, 1990,4( 1 ) : 39 - 57.
  • 6Jong Bae Kim,Hang Joon Kim. Efficient region-based motion segmentation for a video monitoring system [ J ]. Pattern Recognition Letters,2003,24( 1 - 3) : 113 - 128.
  • 7Needham C J, Boyle R D. Tracking multiple sports players through occlusion, congestion and scale[ A]. British Machine Vision Conference [ C ]. Manchester, UK: School of Computing,University of Leeds,2001.1:93 - 102.
  • 8Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[ A]. European Conference on Computer Vision[ C]. Dublin, Ireland,2000.751 - 767.
  • 9Xiaobo Li, Zhi-Qiang Liu, Ka-Ming Leung. Detection of vehicles from traffic scenes using fuzzy integrals [J]. Pattern Recognition, 2002,35 (4) : 967 - 980.
  • 10Vieren C, Cabestaing F, Postaire J. Catching moving objects with snakes for motion tracking[J]. Pattern Recognition Letters, 1995,16(7) :679 - 685.

二级参考文献14

  • 1SasaG Loncaric S.Spatio-temporal image segmentation using optical flow and clustering algorithm [A]..First Int′l Workshop on Image and Signal Processing and Analysis [C].Pula,Croatia,2000.63-68.
  • 2[1]Horn B K, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1): 185~203
  • 3[2]Girosi F, Verri A, Torre V. Constraints for the computation of optical flow. Proceedings of the IEEE Workshop on Visual Motion, 1989. 116~124
  • 4[3]Russo P, Marandey V, Bui T,et al. Optical Flow Techniques for Moving Target Detection. SPIE Proceedings, 1990,1383: 62~71
  • 5[4]Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(10): 972~986
  • 6[5]Hong E P, Spann M. Robust optical flow computation based on least-median-of-square regression. International Journal of Computer Vision, 1999,31(1): 51~826
  • 7Hom B K P, Schunck B G.Determinig optical, flow [ J]. Artificial Intelligence, 1981,17:185 - 203.
  • 8Bruss A R, Horn B K P. Passive navigation [ J ]. Computer Vision,Graphica, and Image Processing, 1983,21:3- 20.
  • 9Thompson W B, Pong T C, Detecting moving object [J], Int J Comp Vision, 1990,4:39 - 57.
  • 10Sasa G, Loncaric S. Spatio-temporal image segmentation using optical flow and clustering algorithm [A],First Int'l Workshop on Image and Signal Processing and Analysis [C]. Pula,Groatia,2000.63-68.

共引文献72

同被引文献446

引证文献54

二级引证文献382

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部