期刊文献+

采用金字塔纹理和边缘特征的图像烟雾检测 被引量:23

Image based smoke detection using pyramid texture and edge features
原文传递
导出
摘要 目的与传统点式感烟器相比,图像烟雾检测具有响应速度快、非接触等显著优势,但烟雾形状、色彩、纹理千差万别,造成现有算法推广性能不好,亟需提高特征推广性能。为此提出了一种采用图像金字塔纹理和边缘多尺度特征的烟雾检测算法。方法首先,该算法将图像进行金字塔分解,然后在每层图像上提取局部二元模式(LBP)和边缘方向直方图(EOH),采用不同池化方法得到金字塔局部二元模式(PLBP)和金字塔边缘方向直方图(PEOH)序列特征,分别用于表征烟雾纹理和边缘信息,首尾相连这些直方图后,采用支持向量机(SVM)进行训练、识别烟雾。结果这金字塔纹理和边缘特征具有很好的分类性能,能够在比较大的图像库上达到94%以上的检测率和3.0%以下的误报率。结论本文算法提取的纹理、边缘特征,对光照、尺度具有一定不变性,实验结果也表明本文特征对烟雾检测具有较好的推广性能。 Objective Image-based smoke detection methods have many advantages over traditional point-based smoke sensors, including their fast response and lack of contact. Nonetheless, existing methods remain challenged in terms of accurately detecting smoke in images due to significant variances in smoke shape, color, and texture. Method To improve recognition accuracy, we extract the features of pyramidal textures and edges to propose a novel image-based smoke detection method. We first decompose an image into an image pyramid and then extract the local binary patterns (LBPs) and edge orientation histograms (EOHs) from each layer of this pyramid. These patterns and histograms are called py- ramidal LBPs (PLBPs) and pyramidal EOHs ( PEOHs), respectively. We also adopt different pooling schemes to gener- ate sequential PLBP and PEOH histograms that represent smoke textures and edges. Finally, we concatenate these histo- grams to form smoke feature vectors and use support vector machines for training and classification. Image pyramids contain scale information ; thus, our pyramidal texture and edge features display certain scale-invariance. Result Experimental results show that the method reports detection rates of above 94% and false alarm rates of less than 3% given our large image datasets. Conclusion The texture and edge features extracted with our method exhibit certain illumination and scaleinvariances. Experiments indicate that these features discriminate and generalize effectively in terms of smoke detection.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第6期772-780,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61363038) 江西省高校科技落地计划(KJLD12066) 江西省青年科学家培养对象(20142BCB23014)
关键词 边缘方向直方图 局部二元模式 支持向量机 图像烟雾检测 edge orientation histogram local binary pattern support vector machine image smoke detection
作者简介 李红娣(1978-),女,助理研究员,2007年于合肥工业大学获学士学位,主要研究方向为图像处理。E—mail:115353662@qq.com
  • 相关文献

参考文献23

  • 1Phillips III W, Shah M, Da V L N. Flame recognition JLn video [ C]//Proceedings of 5th IEEE Workshop on Applications of Computer Vision. Palm Springs, CA, USA : IEEE 2000 : 224- 229.
  • 2Ugur T B, Dedeoglu Y, Gudukbay U, et al. Computer vision based method for real- time fire and flame detection [ J ]. Pattern Recognition Letters, 2006, 27( 1): 49-58.
  • 3Celik T, Demirel H. Fire detection in video sequences using age-.neric color model [J]. Fire Safety Journal, 2009, 44(2) : 147- 158.
  • 4Yuan F N, Liao G X, Fan W C, et al. Vision based fire detec- tion using mixture gaussian model[ C ]//Proceedings of 8th IAF- SS 2005. Beijing, China: s. n. ,1575-1583.
  • 5袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 6Vieente J, Guillemant P. An image processing technique for au- tomatically detecting forest fire[ J. International Journal of Ther- mal Sciences, 2002, 41 ( 12 ) : 1113-1120.
  • 7Fujiwara N, Terada K. Extraction of a smoke region using fractal coding [ C ]//IEEE International Symposium on Communications and Information Technology. Sappom, Japan: IEEE, 2004, 659- 662.
  • 8Ferrari R J, Zhang H, Kube C R. Real-time detection of steam in video images[ J]. Pattern Recognition. 2007, 40(3 ) : 1148- 1159.
  • 9Kopilovic I, Vagvolgyi B, Sziranyi T. Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection [ C ]//Proceedings of 15th International Conference on Pattern Recognition. Barcelona, Spain IEEE, 2000, 4: 714- 717.
  • 10Ugur T B, Dedeoglu Y, Enis C A. Contour Based Smoke Detec- tion in Video Using Wavelets [ C/OL] [ 2014-12-18 ] http:// kilyos, ee. bilknet, edu. tr/- ugnr/eusipco2006_2, pdf.

二级参考文献13

  • 1Yamagishi H,Yamaguchi J.Fire flame detection algorithm using a color camera[C]∥Proceedings of 1999 International Symposium on Micromechatronics and Human Science.Nagoya,Japan,1999:255-260.
  • 2Yamagishi H,Yamaguchi J.A contour fluctuation data processing method for fire flame detection using a color camera[C]∥IEEE 26th Annual Conference on IECON of the Industrial Electronics Society,Nagoya,Japan,2000,(2):824-829.
  • 3Noda S,Ueda K.Fire detection in tunnels using an image processing method[C]∥Proceedings of Vehicle Navigation and Information Systems Conference.Yokohama,Japan,1994:57-62.
  • 4Phillips Ⅲ W,Shah M,Da Vitoria Lobo N.Flame recognition in video[C]∥Fifth IEEE Workshop on Applications of Computer Vision.California:Palm Springs,2000:224-229.
  • 5Healey G,Slater D,Lin T,et al.A system for real-time fire detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,1993:605-606.
  • 6Video smoke detection[EB/OL].http://www.chubb.com.au/vsd.asp.
  • 7CHEN Thou-ho,KAO Cheng-liang,CHANG Sju-ma.An intelligent real-time fire-detection method based on video[C]∥Processings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology.Taipei,2003:104-111.
  • 8Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(8):747-757.
  • 9Pavlidis I,Morellas V,Tsiamyrtzis P,Harp S.Urban surveillance systems:from the laboratory to the commercial world[C]∥Proceedings of the IEEE,2001,89(10):1 478-1 497.
  • 10Persoon E,Fu K.Shape discrimination using Fourier descriptors[J].IEEE Transactions on Systems,Man and Cybernetics,1977,7(3):170-179.

共引文献51

同被引文献163

引证文献23

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部