期刊文献+

基于计算机视觉的视频火焰检测技术 被引量:26

A Survey on Computer Vision Based Video Fire Detection
在线阅读 下载PDF
导出
摘要 视频火焰检测是计算机视觉中一项理论意义与实际价值兼备的重要课题,对烟火事故的消防安全具有重要的实际意义。随着火焰视觉特征模型的不断完善,视频火焰检测方法的研究得到发展。本文综述了视频火焰检测的几个主要方面,包括其相对传统检测器的优势、火焰特性的分类与描述、代表性的检测方法、典型的系统方案及其发展趋势等;探讨了其中涉及的系统通用性、实时性、智能性、评测标准和多传感器融合等关键问题;还介绍了一种新的基于层次注意的视频火焰检测模型及多源感知信息的显著性融合框架,尝试借助显著性特征描述和低冗余计算来提升烟火监测系统的效率和主动性。 Video Fire Detection (VFD) is one of the most active research topics being valuable for both theoretical and practical research in computer vision, especially has a wide spectrum of promising applications in video surveillance for early fire alarms in public security. As the improvement on visual feature model of fire, many VFD systems have been developed. In this paper, some main issues on VFD are reviewed, including its advantages to traditional detectors, the classification and description for visual fire features, the representative algorithms and systems, the future trends, and so on. Then some key problems on the compatibility, real-time efficiency, intelligence, performance evaluation and multi sensor fusion for VFD are discussed. In addition, a novel VFD model based on hierarchical attention and a saliency fusion framework based on multi sensors are proposed for boosting the efficiency and activity of fire surveillance by using salient feature representation and low computational redundancy.
作者 杨俊 王润生
出处 《中国图象图形学报》 CSCD 北大核心 2008年第7期1222-1234,共13页 Journal of Image and Graphics
关键词 计算视觉 火焰 实时警报 视频图像检测 视觉显著性 computer vision, fire/flame, real-time alarm, video fire detection (VFD), visual attention (VA)
作者简介 杨俊(1976-),男。2007年于国防科技大学电子科学与工程学院获博士学位。主要研究方向为图像分析、理解与信息融合,目标识别。E-mail:yyangjun1234@vip.sina.com
  • 相关文献

参考文献48

  • 1Davis W, Notarianni K. NASA fire detection study [ A ]. In: Proceedings of Fire Research and Safety, 13th Joint Panel Meeting [C], Gaithersburg, MD,1997, 2:419-422.
  • 2Cleary T, Grosshandler W. Survey of Fire Detection Technologies and System in Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments [ R ]. NISTIR 6356, Gaithersburg, MD, USA: National Institute of Standards and Technology,1999.
  • 3Miller J C, Smith M L, McCauley M E. Crew Fatigue and Performance on US Coast guard Cutters [ R]. CG-D-10-99, Croton, CT, USA: United States Coast Guard Research and Development Center, 1999.
  • 4Mary W Green. Thee appropriate and effective use of security technologies in U. S. Schools. [ R]. NCJ -178265, Sandia, USA: Sandia National Laboratories, 1999.
  • 5Albers B W, Agrawal A K. Schlieren analysis of an oscillating gas-jet diffusion [J]. Combustion and Flame, 1999, 119(1): 84-94.
  • 6Chamberlin D S, Rose A. The First Symposium (International) on Combustion [ M]. Pittsburgh, USA: The Combustion Institute, 1965:27 - 32.
  • 7Haering N C, Qian R J, Sezan M I. A semantic event-detection approach and its application to detecting hunts in wildlife video [ J]. IEEE Transactions on Circle System Video Technology, 2000, 10(6) : 857 -868.
  • 8Javed O, Shah M. Tracking and object classification for automated surveillance [ A ]. In : Proceedings of the 7th European Conference on Computer Vision ( ECCV' 02) [ C], Berlin, Germany: Springer- Verlag, 2002:343 - 357.
  • 9Naphade M R, Kristjansson T, Frey B, et al. Probabilistic multimedia objects (multijects) : a novel approach to video indexing and retrieval in multimedia systems [ A ]. In: Proceedings of the IEEE International Conference on Image Processing (ICIP'98) [C ], Chicago, Illinois, UAS, 1998, 3:536-540.
  • 10Noda S, Ueda K. Fire detection in tunnels using an image processing method [ A]. In: Proceedings of Vehicle Navigation and Information Systems Conference [ C ] , Yokohama, Japan, 1994: 57 - 62.

二级参考文献15

  • 1林家明.黑白CCD摄像机的近红外特性和应用[J].光学技术,1996,22(6):33-34. 被引量:7
  • 2Yamagishi H,Yamaguchi J.Fire flame detection algorithm using a color camera[C]∥Proceedings of 1999 International Symposium on Micromechatronics and Human Science.Nagoya,Japan,1999:255-260.
  • 3Yamagishi H,Yamaguchi J.A contour fluctuation data processing method for fire flame detection using a color camera[C]∥IEEE 26th Annual Conference on IECON of the Industrial Electronics Society,Nagoya,Japan,2000,(2):824-829.
  • 4Noda S,Ueda K.Fire detection in tunnels using an image processing method[C]∥Proceedings of Vehicle Navigation and Information Systems Conference.Yokohama,Japan,1994:57-62.
  • 5Phillips Ⅲ W,Shah M,Da Vitoria Lobo N.Flame recognition in video[C]∥Fifth IEEE Workshop on Applications of Computer Vision.California:Palm Springs,2000:224-229.
  • 6Healey G,Slater D,Lin T,et al.A system for real-time fire detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,1993:605-606.
  • 7Video smoke detection[EB/OL].http://www.chubb.com.au/vsd.asp.
  • 8CHEN Thou-ho,KAO Cheng-liang,CHANG Sju-ma.An intelligent real-time fire-detection method based on video[C]∥Processings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology.Taipei,2003:104-111.
  • 9Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(8):747-757.
  • 10Pavlidis I,Morellas V,Tsiamyrtzis P,Harp S.Urban surveillance systems:from the laboratory to the commercial world[C]∥Proceedings of the IEEE,2001,89(10):1 478-1 497.

共引文献91

同被引文献236

引证文献26

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部