期刊文献+

基于累积量和主运动方向的视频烟雾检测方法 被引量:51

Video Smoke Detection Based on Accumulation and Main Motion Orientation
在线阅读 下载PDF
导出
摘要 视频烟雾检测具有响应速度快、非接触等优点。但现有的视频检测方法误报率比较高。通过分析早期火灾烟雾运动规律,提出了一种适用于普通视频的烟雾检测方法。为了加快检测速度,将视频图像分割成大小相等的块,并估计每个块的运动方向。采用滑动时间窗口生成块运动方向时间序列,在此时间序列的基础上计算块的累积量和主运动方向。累积量可以反映出运动持续的程度,而主运动方向表明每个块最可能的运动方向,可以有效地抑制噪声的干扰。根据累积量和主运动方向提取出3维特征矢量,采用贝叶斯分类器进行烟雾的检测。实验结果表明,该方法鲁棒性高、速度快,能够准确地检测烟雾的出现。 Video smoke detection has many advantages over traditional methods, such as fast response, non-contact. But most of current methods for video smoke detection have high rates of false alarms. Through analyzing the characteristics of smoke motion,a novel video smoke detection is presented. In order to accelerate detection speed,video images are divided into blocks. Each block motion orientation is estimated by block matching methods. And a time sequence of motion orientation for each block is generated over a sliding time window. Then accumulation and main motion orientation are computed according to the sequence. The accumulation represents the degree of motion duration and the main motion orientation describes the maximum possible orientation of each block over the time window. A 3D feature is extracted from the accumulation and main motion orientation,and a Bayesian classifier is used for smoke detection. Experiments show that the algorithm is robust and significant for improving the accuracy of smoke detection.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第4期808-813,共6页 Journal of Image and Graphics
基金 中国博士后基金项目(20070410792) 火灾科学国家重点实验室开放基金项目(HZ2006-KF03) 国家科技支撑计划(2006BAK06B07) 江西省教育厅科技项目(2007[272])
关键词 视频烟雾检测 累积量 主运动方向 特征分析 计算机视觉 video smoke detection, accumulation, main motion orlentation, feature analysis, computer vision
作者简介 袁非牛(1976-),男。副教授,博士后。主要研究方向为基于计算机视觉的火灾探测、3D可视化。E-mail:yfn@ustc.edu.cn.
  • 相关文献

参考文献22

  • 1Yamagishi H, Yamaguchi J. Fire flame detection algorithm using a color camera[A]. In: Proceedings of 1999 International Symposium on Micromechatronics and Human Science[ C ], Nagoya,Japan, 1999 : 255 - 260.
  • 2Yamagishi H, Yamaguchi J. A contour fluctuation data processing method for fire flame detection using a color camera [ A ]. In: Proceedings of IEEE 26th Annual Conference on IECON of the Industrial Electronics Society [ C ], Nagoya, Japan, 2000:824 - 829.
  • 3Noda S,Ueda K. Fire detection in tunnels using an image processing method[ A]. In: Proceedings of Vehicle Navigation and Information Systems Conference[ C ] , Yokohama,Japan, 1994:57 - 62.
  • 4Phillips Ⅲ W, Shah M,Da Vitoria Lobo N. Flame recognition in video [ A]. In: Proceedings of Fifth IEEE Workshop of Applications of Computer Vision[ C ] , California, USA ,2000:224 - 229.
  • 5董华,程晓舫,范维澄.早期火灾图像监测技术的应用与比较[J].光学技术,1997,23(5):51-53. 被引量:19
  • 6卢结成,吴龙标,宋卫国.一种火灾图像探测系统的研究[J].仪器仪表学报,2001,22(4):437-440. 被引量:24
  • 7袁宏永,刘炳海,陈晓军,宗封仪.图像型火灾智能自动探测与空间定位技术[J].消防科技,1998,22(2):2-4. 被引量:21
  • 8袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 9Yuan Fei-niu,Liao Guang-xuan, Fan Wei-Cheng, et al. Vision based fire detection using mixture gaussian model [ A ]. In : Proceedings of the 8th IAFSS 2005 [ C ] , Beijing, China,2005 : 1575 - 1583.
  • 10Chen Thou-ho, Kao Cheng-liang, Chang Sju-ma. An intelligent realo time fire-detection method based on video processing [ A ]. In: Proceedings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology [ C ], Taipei, Taiwan, 2003 : 104 - 111.

二级参考文献15

  • 1林家明.黑白CCD摄像机的近红外特性和应用[J].光学技术,1996,22(6):33-34. 被引量:7
  • 2Yamagishi H,Yamaguchi J.Fire flame detection algorithm using a color camera[C]∥Proceedings of 1999 International Symposium on Micromechatronics and Human Science.Nagoya,Japan,1999:255-260.
  • 3Yamagishi H,Yamaguchi J.A contour fluctuation data processing method for fire flame detection using a color camera[C]∥IEEE 26th Annual Conference on IECON of the Industrial Electronics Society,Nagoya,Japan,2000,(2):824-829.
  • 4Noda S,Ueda K.Fire detection in tunnels using an image processing method[C]∥Proceedings of Vehicle Navigation and Information Systems Conference.Yokohama,Japan,1994:57-62.
  • 5Phillips Ⅲ W,Shah M,Da Vitoria Lobo N.Flame recognition in video[C]∥Fifth IEEE Workshop on Applications of Computer Vision.California:Palm Springs,2000:224-229.
  • 6Healey G,Slater D,Lin T,et al.A system for real-time fire detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,1993:605-606.
  • 7Video smoke detection[EB/OL].http://www.chubb.com.au/vsd.asp.
  • 8CHEN Thou-ho,KAO Cheng-liang,CHANG Sju-ma.An intelligent real-time fire-detection method based on video[C]∥Processings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology.Taipei,2003:104-111.
  • 9Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(8):747-757.
  • 10Pavlidis I,Morellas V,Tsiamyrtzis P,Harp S.Urban surveillance systems:from the laboratory to the commercial world[C]∥Proceedings of the IEEE,2001,89(10):1 478-1 497.

共引文献91

同被引文献373

引证文献51

二级引证文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部