摘要
矩阵的标准型理论是矩阵论中重要的一个方面,尤其关于化矩阵为Jordan标准型的理论及方法,已经列为线性微分方程组理论的必不可少的基础知识。矩阵Jordan标准型的计算是求解特征值问题的进一步发展,回顾高等代数学过的Jordan标准型,最常见的求法是通过初等因子和Jordan型中Jordan块的关系求解。文章由定义出发,介绍了Jordan标准型的求法,此外,还讨论了Jordan标准型在"矩阵分解论"、"计算矩阵多项式"和求解线性微分方程组中的应用,并通过一些例题来说明,从而感受Jordan标准型在代数学中广泛的应用价值。
The standard theory of the matrix is an important aspect in the matrix theory, especially about the theory and method of the matrix of the Jordan standard already listed as necessary basic knowledge of the theory of linear differential equations. Matrix Jordan canonical form of the calculation is applied for solution of the eigenvalue problem of further development. In view of the Jordan standard in higher algebra, the most common method is the solution through the primary factor and Jordan Jordan block in relationship. This paper starts with definition and introduces the method of Jordan standard, discusses the Jordan standard in the " matrix decomposition theory ", "computational matrix polynomials" and the application of solving linear differential equations. Then, through some examples for illustration, one can feel the Jordan standard's extensive application value in algebra.
出处
《临沧师范高等专科学校学报》
2015年第1期119-124,共6页
Journal of Lincang Education College
关键词
JORDAN标准型
求法
应用
Jordan canonical form
Calculation methods
Application
作者简介
赵云平(1982-).女。临沧师范高等专科学校数理系讲师.主要从事基础数学数论应用、应用数学运筹学线性规划和数值代数研究。